精英家教网 > 高中数学 > 题目详情

已知椭圆的两个焦点和短轴的两个端点恰好为一个正方形的四个顶点,则该椭圆的离心率为( )

A B C D

 

【答案】

D

【解析】

试题分析:依题意椭圆的焦距和短轴长相等,故,∴.

考点:椭圆的简单几何性质.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届广东省广州市高三9月三校联考理科数学试卷(解析版) 题型:解答题

已知椭圆的两个焦点和上下两个顶点是一个边长为2且∠F1B1F2的菱形的四个顶点.

(1)求椭圆的方程;

(2)过右焦点F2 ,斜率为)的直线与椭圆相交于两点,A为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.求证:为定值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两个焦点为(0,2)和(0,-2),并且椭圆经过点,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:2013年上海市静安区高考数学一模试卷(理科)(解析版) 题型:解答题

已知椭圆的两个焦点为F1(-c,0)、F2(c,0),c2是a2与b2的等差中项,其中a、b、c都是正数,过点A(0,-b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程;
(2)点P是椭圆上一动点,定点A1(0,2),求△F1PA1面积的最大值;
(3)已知定点E(-1,0),直线y=kx+t与椭圆交于C、D相异两点.证明:对任意的t>0,都存在实数k,使得以线段CD为直径的圆过E点.

查看答案和解析>>

科目:高中数学 来源:2013年上海市静安区高考数学一模试卷(文科)(解析版) 题型:解答题

已知椭圆的两个焦点为F1(-c,0)、F2(c,0),c2是a2与b2的等差中项,其中a、b、c都是正数,过点A(0,-b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程;
(2)过点A作直线交椭圆于另一点M,求|AM|长度的最大值;
(3)已知定点E(-1,0),直线y=kx+t与椭圆交于C、D相异两点.证明:对任意的t>0,都存在实数k,使得以线段CD为直径的圆过E点.

查看答案和解析>>

同步练习册答案