分析 (1)由题意可得:数列{an}为等比数列,首项为120,公比为$\frac{3}{2}$;数列{bn}为等差数列,首项为300,公差为m.利用等差数列与等比数列的前n项和公式即可得出;
(2)F8=$240[(\frac{3}{2})^{8}-1]$+300×8+$\frac{8×7}{2}$m≥10000,解出即可.
解答 解:(1)由题意可得:数列{an}为等比数列,首项为120,公比为$\frac{3}{2}$;数列{bn}为等差数列,首项为300,公差为m.
∴Sn=$\frac{120[(\frac{3}{2})^{n}-1]}{\frac{3}{2}-1}$=$240[(\frac{3}{2})^{n}-1]$,Tn=300n+$\frac{n(n-1)}{2}•m$,
∴Fn=Sn+Tn=$240[(\frac{3}{2})^{n}-1]$+300n+$\frac{n(n-1)}{2}•m$.
(2)F8=$240[(\frac{3}{2})^{8}-1]$+300×8+$\frac{8×7}{2}$m≥10000,
解得m≥59.65,
因此m的最小值为60.
答:(1)Sn=$240[(\frac{3}{2})^{n}-1]$,Tn=300n+$\frac{n(n-1)}{2}•m$,Fn=Sn+Tn=$240[(\frac{3}{2})^{n}-1]$+300n+$\frac{n(n-1)}{2}•m$.
(2)该市计划用8年的时间完成全部更换,m的最小值为60.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | $\frac{3}{2}$ | C. | 3 | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com