精英家教网 > 高中数学 > 题目详情
椭圆x2+4y2=4长轴上一个顶点为A,以A为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是
 
分析:根据A是直角顶点推断直角边斜率是1和-1.设A是(-2,0)则可得一直角边方程与椭圆方程联立消去y求得交点的横坐标,进而根据直线方程求得横坐标,进而可求得一直角边的长,最后根据面积公式可得三角形的面积.
解答:解:A是直角顶点
所以直角边斜率是1和-1
设A是(-2,0)
所以一条是y=x+2
代入椭圆
5x2+16x+12=0
(5x+6)(x+2)=0
x=-
6
5
,x=-2(排除)
x=-
6
5
,y=x+2=
4
5

所以和椭圆交点是C(-
6
5
4
5

则AC2=(-2+
6
5
2+(0-
4
5
2=
32
25

所以面积=
1
2
AC2=
16
25

故答案为
16
25
点评:本题主要考查了椭圆的简单性质.本题是研究椭圆和解三角形问题的综合题.对学生对问题的综合分析的能力要求很高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,点P(x,y)是椭圆x2+4y2=4上的一个动点,求点P到直线x+2y-3
2
=0
距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆x2+4y2=4上的任意一点,A(4,0),若M为线段PA中点,则点M的轨迹方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x-2y+2=0与椭圆x2+4y2=4相交于A,B两点,则|AB|=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•潍坊三模)已知椭圆x2+4y2=4与双曲线x2-2y2=a(a>0)的焦点重合,则该双曲线的离心率等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆x2+4y2=4的右焦点F作直线l交椭圆于M、N两点,设|
MN
|=
3
2

(1)求直线l的斜率;
(2)设M、N在椭圆右准线上的射影分别是M1、N1,求
MN
M1N1
的值.

查看答案和解析>>

同步练习册答案