精英家教网 > 高中数学 > 题目详情

已知x,y∈R,且数学公式,则x+2y的最大值是


  1. A.
    8
  2. B.
    6
  3. C.
    4
  4. D.
    2
C
分析:先画出足约束条件 的平面区域,再将平面区域的各角点坐标代入进行判断,即可求出x+2y的最大值.
解答:解:已知实数x、y满足 在坐标系中画出可行域,
三个顶点分别是A(0,1),B(1,0),C(2,1),
由图可知,当x=2,y=1时
x+2y的最大值是4.
故选C.
点评:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知x,y∈R,且x2+y2=1,则x2+4y+3的最大值是
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈R,且满足不等式组
x+y≥6
x≤5
y≤7
,则x2+y2的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈R,且2010x+2011y>2010-y+2011-x,那么(  )
A、x+y<0B、x+y>0C、xy<0D、xy>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈R+,且满足
x
4
+
y
5
=1
,则x•y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淄博二模)已知x,y∈R+,且x+y=1,则
1
x
+
4
y
的最小值为
(  )

查看答案和解析>>

同步练习册答案