精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=4,BC=CC1=
2
,P是BC1上一动点,则CP+PA1的最小值是
 
分析:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,不难看出CP+PA1的最小值是A1C的连线.(在BC1上取一点与A1C构成三角形,因为三角形两边和大于第三边)由余弦定理即可求解.
解答:解:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,
连接A1C,长度即是所求.
∵直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=4,BC=CC1=
2

∴矩形BCC1B1是边长为
2
的正方形;则BC1=2;
另外A1C1=AC=4;
在矩形ABB1A1中,A1B1=AB=3
2
,BB1=
2
,则A1B=2
5

易发现42+22=20,即A1C12+BC12=A1B2
∴∠A1C1B=90°,则∠A1C1C=135°
故A1C=
A1C
2
1
+C1C2-2A1C1C1C•cos135°
=
16+2+2×4•
2
2
2
=
26

故答案为:
26
点评:本题考查的知识中是棱柱的结构特征及两点之间的距离,其中利用旋转的思想,将△CBC1沿BC1展开,将一个空间问题转化为平面内求两点之间距离问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案