精英家教网 > 高中数学 > 题目详情

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据







2.5


4.5
(1) 请画出上表数据的散点图;
(2) 请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
(3) 已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考数据:  3×2.5+4×3+5×4+6×4.5=66.5)

(1)略
(2)线性回归方程为y=0.7x+0.35
(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7100+0.35=70.35
故耗能减少了90-70.35=19.65(吨)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

假定乌鲁木齐市第一中学有在编人员160人,其中行政人员16人,教师112人,后勤人员32人。学校为了了解机构改革意见,要从中抽取一个容量为20的样本,请你写出具体的抽样过程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:

(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在调查的名上网的学生中有名学生睡眠不好,名不上网的学生中有名学生睡眠不好,利用独立性检验的方法来判断是否能以的把握认为“上网和睡眠是否有关系”.
附:
参考数据























.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
甲,乙两人进行射击比赛,每人射击6次,他们命中的环数如下表:


5
8
7
9
10
6

6
7
4
10
9
9
  (1)根据上表中的数据,判断甲,乙两人谁发挥较稳定;
(2)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
网络对现代人的生活影响较大, 尤其对青少年. 为了了解网络对中学生学习成绩的影响, 某地区教育局从辖区高中生中随机抽取了1000人进行调查, 具体数据如下列联表所示.

 
经常上网
不经常上网
合计
不及格
80
a
200
及格
b
680
c
合计
200
d
1000
(1)求a,b,c,d;
(2)利用独立性检验判断, 有多大把握认为上网对高中生的学习成绩有关.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某校举办年上海世博会知识竞赛,从参赛的高一、高二学生中各抽人的成绩作










 

为样本,其结果如下表:
参考数据:
 
高一
高二
合计
合格人数



不合格人数



合计



(Ⅰ)求的值;
(Ⅱ)你有多大的把握认为“高一、高二两个年级这次世博会知识竞赛的成绩有差异”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组……第五组.下图是按上述分组方法得到的频率分布直方图.

(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设表示该班某两位同学的百米测试成绩,且已知.
求事件“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“上海世博会”将于2010年5月1日至10月31日在上海举行。世博会“中国馆·贵宾厅”作为接待中外贵宾的重要场所,其中陈列的艺术品是体现兼容并蓄、海纳百川的重要文化载体,为此,上海世博会事物协调局将举办“中国2010年上海世博会‘中国馆·贵宾厅’艺术品方案征集”活动.某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应征,假设这四件代表作中中国画、书法、油画入选“中国馆·贵宾厅”的概率均为,陶艺入选“中国馆·贵宾厅”的概率为.假定这四件作品是否入选相互没有影响.
(1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆·贵宾厅”的概率;
(2)设该地美术馆选送的四件代表作中入选“中国馆·贵宾厅”的作品件数为随机变量,求的数学期望.

查看答案和解析>>

同步练习册答案