精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+2bx-b
(1)当b=2时,求函数y=f(x) 在[1,4]上的最值;
(2)若函数y=f(x) 在[1,4]上仅有一个零点,求b的取值范围;
(3)是否存在实数b,使得函数y=f(x) 在[1,+∞)上的最大值是2,若存在,求出b的值;若不存在,请说明理由.
【答案】分析:(1)当b=2时,函数y=f(x)的图象为开口向下,对称轴为x=2的抛物线,故函数y=f(x) 在[1,2]上为增函数,在[2,4]上为减函数,由此判断出最值,求出即可;
(2)若函数y=f(x) 在[1,4]上仅有一个零点,则f(1)•f(4)≤0,由此构造关于b的不等式,解不等式可得b的取值范围;
(3)分b<1时,和b≥1时,结合 二次函数的图象和性质分析出函数的最大值为2时,对应的b值,最后综合讨论结果,可得答案.
解答:解:f(x)=-x2+2bx-b=-(x-b)2-b+b2,的图象开口向下,对称轴为x=b的抛物线…(1分)
(1)当b=2时,f(x)=-x2+4x-2=-(x-2)2+2的图象开口向下,对称轴为x=2…(2分)
∴f(x)max=f(2)=2,
f(x)min=f(4)=-2…(4分)
(2)∵函数y=f(x) 在[1,4]上仅有一个零点
∴f(1)•f(4)≤0…(6分)(须验证端点是否成立与△=0的情况)
即(-1+b)(-16+7b)≤0

∴b的取值范围是…(7分)
(3)当b<1时,y=f(x) 在[1,+∞)上是减函数,
f(x)max=f(1)=b-1=2
解得b=3,不合要求…(9分)
当b≥1时,
解得b=2或b=-1(不合,舍去),
∴b=2…(11分)
综上所述,当b=2时,使得函数y=f(x) 在[1,+∞)上的最大值是2.…(12分)
点评:本题考查的知识点是二次函数在闭区间上的最值,函数的值域,函数的零点,熟练掌握二次函数的图象和性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案