精英家教网 > 高中数学 > 题目详情
7.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{2π}{3}$的单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$.

分析 根据平面向量的线性运算,求出$\overrightarrow{a}$+$\overrightarrow{b}$,再利用数量积求模长.

解答 解:向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{2π}{3}$的单位向量,
且$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,
∴$\overrightarrow{a}$+$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$;
∴${(\overrightarrow{a}+\overrightarrow{b})}^{2}$=${4\overrightarrow{{e}_{1}}}^{2}$+4$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$+${\overrightarrow{{e}_{2}}}^{2}$
=4×12+4×1×1×cos$\frac{2π}{3}$+12
=3,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了平面向量的线性运算与数量积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图是某个四面体的三视图,则该四面体的外接球的表面积为(  )
A.52πB.4$\sqrt{13}$πC.13πD.$\frac{52}{3}$$\sqrt{13}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设全集U={x∈N|-2≤x≤7},集合A={1,2,4,5},B={1,2,3,7},则∁UA∩B=(  )
A.{1,2,3}B.{0,3,7}C.{3,7}D.{1,3,7}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a>b,使a(c-5)2>b(c-5)2成立的充要条件是c≠5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)的图象向左平移$\frac{π}{4}$个单位,得到的函数图象的对称中心与f(x)图象的对称中心重合,则ω的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x+3y=1,求2x+8y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+ax+3,a∈R.
(1)当a=-4时,且x∈[0,2],求函数f(x)的值域;
(2)若关于x的方程f(x)=0在(1,+∞)上有两个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面是边长是I的正方形,侧棱PD⊥平面ABCD,M、N分别是AB、PC的中点
(1)求证:MN∥平面PAD
(2)若MN=3,求四棱锥P-ABCD的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知△ABC中A(2,0),B(4,0),C(2,2),求△ABC的外接圆方程
(2)过直线l:x+2y+1=0与圆C:x2+y2=8的交点,且圆心在直线y=x上的圆的方程.

查看答案和解析>>

同步练习册答案