精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x2+ax+3,a∈R.
(1)当a=-4时,且x∈[0,2],求函数f(x)的值域;
(2)若关于x的方程f(x)=0在(1,+∞)上有两个不同实根,求实数a的取值范围.

分析 (1)当a=-4时,配方法化简f(x)=(x-2)2-1,从而求值域;
(2)由题意知$\left\{\begin{array}{l}{△={a}^{2}-12>0}\\{-\frac{a}{2}>1}\\{f(1)=1+a+3>0}\end{array}\right.$,从而解得.

解答 解:(1)当a=-4时,f(x)=x2-4x+3=(x-2)2-1,
故-1≤(x-2)2-1≤3,
故函数f(x)的值域为[-1,3];
(2)∵关于x的方程f(x)=0在(1,+∞)上有两个不同实根,
∴$\left\{\begin{array}{l}{△={a}^{2}-12>0}\\{-\frac{a}{2}>1}\\{f(1)=1+a+3>0}\end{array}\right.$,
解得,-4<a<-2$\sqrt{3}$.

点评 本题考查了二次函数的值域及二次方程与二次函数的关系应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的前n项和为Sn,且满足:a1+a2=0,S4=8
(1)求数列{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{3}^{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x>0,则3x+$\frac{3}{x}$取最小值时当且仅当x为(  )
A.±1B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{2π}{3}$的单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=-x2+2ax+1-a在区间[0,1]上的最大值为1,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x3+kx(k∈R),若关于x的方程f(x)=lnx+2ex2有唯一解,则下列说法正确的是(  )
A.k=$\frac{1}{e}$+e
B.函数f(x)的图象在点(0,f(0))处的切线的斜率为e2-$\frac{1}{e}$
C.函数f(x)在[0,e]上单调递减
D.函数f(x)在[0,e]上的最大值为2e3+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{{x}^{2}}{10}+{y}^{z}$=1与抛物线yz=2px(p>0)有一个共同的焦点,则此抛物线的焦点到准线的距离为(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:x2+y2-x+2y=0和直线l:x-y+1=0
(1)试判断直线l与圆C之间的位置关系,并证明你的判断;
(2)求与圆C关于直线l对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(ωx+φ)+1(0<ω<3,0<φ<$\frac{π}{2}$)的一系列对应值如下表:
 x-$\frac{π}{3}$-$\frac{π}{12}$ 0 $\frac{π}{6}$ $\frac{5π}{12}$ $\frac{2π}{3}$ $\frac{11π}{12}$
 f(x)-1 1 2 3 1-1 1
(1)根据表格提供的数据求函败y=f(x)的解析式;
(2)求函数y=f(x)的单调递增区间与对称中心坐标;
(3)函数y=mf(x)-1在(-$\frac{π}{12}$,$\frac{π}{3}$)上有零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案