分析 (1)求导数,取得函数的单调性,即可求函数f(x)的最小值;
(2)确定f′(x)=-e-x+$\frac{{n}^{2}}{(mx+n)^{2}}$≥0在[0,+∞)上恒成立,设$\frac{m}{n}$=t,则$\frac{1}{tx+1}$≥${e}^{-\frac{x}{2}}$在[0,+∞)上恒成立,tx+1≤${e}^{\frac{x}{2}}$在[0,+∞)上恒成立,由此即可求$\frac{m}{n}$的最大值.
解答 解:(1)若m=0,n=1,f(x)=e-x+x,
∴f′(x)=-e-x+1,
∴x<0时,f′(x)<0,函数单调递减;x>0时,f′(x)>0,函数单调递增,
∴x=0时,函数取得极小值,也是最小值为1;
(2)∵f(x)=e-x+$\frac{nx}{mx+n}$,
∴f′(x)=-e-x+$\frac{{n}^{2}}{(mx+n)^{2}}$,
∵f(x)在[0,+∞)上的最小值为1,f(0)=1,
∴f′(x)=-e-x+$\frac{{n}^{2}}{(mx+n)^{2}}$≥0在[0,+∞)上恒成立,
∴$\frac{n}{mx+n}$≥${e}^{-\frac{x}{2}}$在[0,+∞)上恒成立,
设$\frac{m}{n}$=t,则$\frac{1}{tx+1}$≥${e}^{-\frac{x}{2}}$在[0,+∞)上恒成立,
∴tx+1≤${e}^{\frac{x}{2}}$在[0,+∞)上恒成立
令g(x)=tx+1-${e}^{\frac{x}{2}}$,g′(x)=t-$\frac{1}{2}$${e}^{\frac{x}{2}}$,
∴函数在[0,2ln2t)上单调递减,[2ln2t,+∞)上单调递增,
∴x=2ln2t时,g(x)min=2tln2t+1-2t,
∴2tln2t+1-2t≤0,
∵2t=1,2tln2t+1-2t=0,2t<1,2tln2t+1-2t<0,2t>1,2tln2t+1-2t>0,
∴2t≤1,∴t≤$\frac{1}{2}$,
∴$\frac{m}{n}$的最大值为$\frac{1}{2}$.
点评 本题考查函数的单调性与极值,考查恒成立问题,考查函数的最小值,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| t(小时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1 | 0.5 | 0.99 | 1.5 |
| A. | 10小时 | B. | 8小时 | C. | 6小时 | D. | 4小时 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 样本方差反映了所有样本数据与样本平均值的偏离程度 | |
| B. | 残差平方和越小的模型,拟合的效果越好 | |
| C. | 用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好 | |
| D. | 在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是残差平方和 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com