精英家教网 > 高中数学 > 题目详情
已知曲线C:,直线l:ρ(cosθ-2sinθ)=12.
(1)将直线l的极坐标方程化为直角坐标方程;
(2)设点P在曲线C上,求P点到直线l距离的最小值.
【答案】分析:(1)先将ρ(cosθ-2sinθ)=12的左式去括号,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
(2)先依据点P在曲线C:,设P(3cosθ,2sinθ),利用点到直线的距离列出函数式,最后求此函数的最小值即可.
解答:解:(1)∵ρ(cosθ-2sinθ)=12,
∴ρcosθ-2ρsinθ=12,
即:x-2y-12=0;
∴直线l的极坐标方程化为直角坐标方程为x-2y-12=0(4分)
(2)设P(3cosθ,2sinθ),
=
(其中,
当cos(θ+φ)=1时,
∴P点到直线l的距离的最小值为.(10分)
点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年西藏拉萨中学高三第七次月考考试文科数学 题型:选择题

已知曲线C:,直线l:y=2x+b,那么曲C与直线l相切的充要条件是

A.b=        B.b=-   C.b=5   D.b=或b=-

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省盐城中学高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知曲线C:,直线l:ρ(cosθ-2sinθ)=12.
(1)将直线l的极坐标方程化为直角坐标方程;
(2)设点P在曲线C上,求P点到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高三(上)12月质量检测数学试卷(解析版) 题型:解答题

已知曲线C:,直线l:ρ(cosθ-2sinθ)=12.
(1)将直线l的极坐标方程化为直角坐标方程;
(2)设点P在曲线C上,求P点到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源:2013年江苏省徐州市、宿迁市高考数学三模试卷(解析版) 题型:填空题

已知曲线C:,直线l:y=x,在曲线C上有一个动点P,过点P分别作直线l和y轴的垂线,垂足分别为A,B.再过点P作曲线C的切线,分别与直线l和y轴相交于点M,N,O是坐标原点.若△ABP的面积为,则△OMN的面积为   

查看答案和解析>>

同步练习册答案