精英家教网 > 高中数学 > 题目详情
2.求函数y=3x2-6x-9在[-1,1]上的最大值和最小值.

分析 求得二次函数的对称轴,可得区间[-1,1]为递减,可得最值.

解答 解:函数y=3x2-6x-9=3(x-1)2-12,
对称轴为x=1,
即有函数在[-1,1]上递减,
可得f(x)的最大值为f(-1)=0;
f(x)的最小值为f(1)=-12.

点评 本题考查二次函数的最值的求法,注意运用对称轴和区间的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某组有12名学生,其中男,女生各占一半,把全组学生分成人数相等的两小组,求每小组里男、女生人数相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的定义域.
(1)y=tan(3x+$\frac{π}{4}$)   
(2)y=$\sqrt{2sinx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x>1,且x+x-1=11,求${x}^{\frac{1}{2}}$-${x}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,用与圆柱的母线成60°角的平面截圆柱得到的截口曲线是椭圆,则该椭圆的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设向量$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(4,1),$\overrightarrow{c}$=(cosθ,λsinθ)(λ∈R).
(1)设$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为α,求tanα;
(2)若(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$的最大值$\sqrt{5}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若z=$\frac{3+2i}{i}$,则|$\overline{z}$-1|等于(  )
A.3B.5C.$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=sin$\frac{π}{6}$x,则f(1)+f(2)+f(3)+…+f(2009)的值等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1+\sqrt{3}}{2}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“?x0∈R,x0+1<0或x02-x0>0”的否定形式是(  )
A.?x0∈R,x0+1≥0或$x_0^2-{x_0}≤0$B.?x∈R,x+1≥0或x2-x≤0
C.?x0∈R,x0+1≥0且$x_0^2-{x_0}≤0$D.?x∈R,x+1≥0且x2-x≤0

查看答案和解析>>

同步练习册答案