精英家教网 > 高中数学 > 题目详情
(2011•广州模拟)设随机变量X~N(1,52),且P(X≤0)=P(X>a-2),则实数a的值为(  )
分析:根据随机变量符合正态分布,从表达式上看出正态曲线关于x=1对称,得到对称区间的数据对应的概率是相等的,根据两个区间的概率相等,得到这两个区间关于x=1对称,得到结果.
解答:解:∵随机变量X~N(1,52),
∴正态曲线关于x=1对称,
∵P(X≤0)=P(X>a-2),
∴0与a-2关于x=1对称,
1
2
(0+a-2)=1
∴a=4,
故选A.
点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态曲线的对称性,考查对称区间的概率的相等的性质,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广州模拟)已知函数f(x)=cos2x+
3
sinxcosx-
1
2

(Ⅰ)若x∈[0,
π
2
]
,求f(x)的最大值及取得最大值时相应的x的值;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,若f(
A
2
)=1
,b=l,c=4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)定义:若函数f(x)的图象经过变换T后所得图象对应函数的值域与f(x)的值域相同,则称变换T是f(x)的同值变换.下面给出四个函数及其对应的变换T,其中T不属于f(x)的同值变换的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)已知实数x,y满足
x≥0
y≤1
2x-2y+1≤0.
,若目标函数z=ax+y(a≠0)取得最小值时最优解有无数个,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)已知直线y=k(x-2)(k>0)与抛物线y2=8x相交于A、B两点,F为抛物线的焦点,若|FA|=2|FB|,则k的值为
2
2
2
2

查看答案和解析>>

同步练习册答案