精英家教网 > 高中数学 > 题目详情
14.(1)求值:(0.064)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{2\sqrt{2}}$)-2÷160.75+($\sqrt{2}$-2017)0
(2)求值:$\frac{lg\sqrt{27}+lg8-lg\sqrt{1000}}{lg1.2}$.

分析 (1)根据指数幂的运算性质即可求出,
(2)根据对数运算性质即可求出

解答 解(1)原式═0.4-1-8÷8+1=$\frac{5}{2}$;
(2)原式=$\frac{\frac{3}{2}lg3+3lg2-\frac{3}{2}}{lg\frac{3×4}{10}}$=$\frac{\frac{3}{2}(lg3+2lg2-1)}{lg3+2lg2-1}$=$\frac{3}{2}$.

点评 本题考查了指数幂和对数运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.二项式${({{x^2}-\frac{1}{x}})^6}$的展开式中(  )
A.不含x9B.含x4C.含x2D.不含x项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z1=1-i,z2=1+i,其中i是虚数单位,则$\frac{{z}_{1}}{{z}_{2}}$的模为(  )
A.$\frac{1}{4}$B.$\sqrt{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,一个摩天轮的半径为8m,每12min旋转一周,最低点离地面为2m,若摩天轮边缘某点P从最低点按逆时针方向开始旋转,则点P离地面的距离h(m)与时间t(min)之间的函数关系是(  )
A.h=8cost+10B.h=-8cos$\frac{π}{3}$t+10C.h=-8sin$\frac{π}{6}$t+10D.h=-8cos$\frac{π}{6}$t+10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:已知角α终边上的一点P(7m,-3m)(m≠0).
(Ⅰ)求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值;
(Ⅱ)求2+sinαcosα-cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线2x+y-2=0经过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上顶点与右焦点,则椭圆的方程为(  )
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{9}+\frac{y^2}{4}=1$D.$\frac{x^2}{6}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)={x^2}+\frac{1}{x+1},x∈[0,1]$.
(1)证明:$f(x)≥{x^2}-\frac{4}{9}x+\frac{8}{9}$;
(2)证明:$\frac{68}{81}<f(x)≤\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2x2-lnx的递增区间是(  )
A.$(0,\frac{1}{2})$B.$(-\frac{1}{2},0)$和$(\frac{1}{2},+∞)$C.$(\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2})$和$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=n2-n(n∈N*).正项等比数列{bn}的首项b1=1,且3a2是b2,b3的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)若cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案