精英家教网 > 高中数学 > 题目详情
5.直角坐标系xOy中,已知点M(-1,0)、N(1,0),点P到点M的距离是到点N的距离的$\sqrt{3}$倍,
(1)求点P的轨迹E的方程;
(2)已知不经过原点的直线l:y=-x+b与轨迹E交于A、B两点,若以AB为直径的圆恒经过点N,求|AB|.

分析 (1)利用点M(-1,0)、N(1,0),点P到点M的距离是到点N的距离的$\sqrt{3}$倍,建立方程,即可求点P的轨迹E的方程;
(2)不经过原点的直线l:y=-x+b与轨迹E联立得2x2-(4+2b)x+1+b2=0,设A(x1,y1)B(x2,y2)因为以AB为直径的圆恒经过点N(1,0),即有NA⊥NB,$\overrightarrow{NA}•\overrightarrow{NB}$=0.由根与系数的关系得b,即可求出|AB|.

解答 解:(1)设点P(x,y),依题意,$\sqrt{(x+1)^{2}+{y}^{2}}$=$\sqrt{3}•\sqrt{(x-1)^{2}+{y}^{2}}$,
化简,得(x-2)2+y2=3,此即点P的轨迹E的方程;…(4分)
(2)联立直线l:y=-x+b与轨迹E,消去y并整理,得2x2-(4+2b)x+1+b2=0,
设A(x1,y1)B(x2,y2),
利用根与系数的关系,可得x1x2=$\frac{1+{b}^{2}}{2}$,x1+x2=2+b;…(6分)
因为以AB为直径的圆恒经过点N(1,0),即有NA⊥NB,
所以$\overrightarrow{NA}•\overrightarrow{NB}$=(x1-1)(x2-1)+y1y2=2x1x2-(1+b)(x1+x2)+1+b2=1+b2-(1+b)(2+b)+1+b2=0,…(8分)
解得b=0或b=3;…(9分)
当b=0时,直线l过原点,不合题意,舍去,
故b=3,直线l的方程为y=-x+3…(10分)
圆心(2,0)到l的距离d=$\frac{|-2+3|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
由垂径定理,|AB|=2$\sqrt{3-\frac{1}{2}}$=$\sqrt{10}$.…(12分)

点评 本题考查轨迹方程,考查直线与圆的位置关系,考查韦达定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=|x+1|-m|x-2|.
(Ⅰ)若m=1,求函数f(x)的值域;
(Ⅱ)若m=-1,求不等式f(x)>3x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中不正确的是(  )
A.如果平面α⊥平面 γ,平面β⊥平面 γ,α∩β=l,那么l⊥γ
B.如果平面α⊥平面 β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面 β,过α内任意一点作交线的垂线,那么此垂线必垂直于β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短半轴长为1,离心率为$\frac{\sqrt{3}}{2}$
(1)求椭圆C的方程
(2)直线l与椭圆C有唯一公共点M,设直线l的斜率为k,M在椭圆C上移动时,作OH⊥l于H(O为坐标原点),当|OH|=$\frac{4}{5}$|OM|时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过圆C:x2+y2-2y-8=0的圆心并且垂直于l:$\sqrt{3}$x+y+m=0的直线的方程是x-$\sqrt{3}$y+$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a2=$\frac{7}{2}$,且an+1=3an-1(n∈N*).
(1)求数列{an}的通项公式以及数列{an}的前n项和Sn的表达式;
(2)若不等式$\frac{{a}_{n}+\frac{1}{2}}{{a}_{n+1}-\frac{3}{2}}$≤m对?n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数轴上有四个间隔为1的点依次记为A、B、C、D,在线段AD上随机取一点E,则E点到B、C两点的距离之和小于2的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.抛物线 M:y2=2px(p>0)与椭圆 $N:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$有相同的焦点F,抛物线M与 椭圆N交于A,B,若F,A,B共线,则椭圆N的离心率等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{-lnx,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$则f(f(e))=2.

查看答案和解析>>

同步练习册答案