精英家教网 > 高中数学 > 题目详情
5.给出下列命题:
(1)若数列{an}存在极限,则该极限唯一;
(2)若直线l的倾斜角为α,则l的斜率存在且为tanα;
(3)设向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为α,若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则α为锐角;
(4)到x轴、y轴距离相等的点的轨迹方程为x2-y2=0.
其中所有正确命题的序号为(  )
A.(1)(2)B.(2)(3)C.(1)(4)D.(2)(4)

分析 结合数列极限的定义,斜率与倾斜角的关系,向量的夹角,轨迹方程,逐一分析四个结论的真假,综合讨论结果,可得答案.

解答 解:(1)若数列{an}存在极限,则该极限唯一,故正确;
(2)若直线l的倾斜角为α,当α≠90°时,l的斜率存在且为tanα,故错误;
(3)设向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为α,若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则α为锐角或0,故错误;
(4)到x轴、y轴距离相等的点的轨迹方程为|x|=|y|,即x2-y2=0.
故正确的命题为:(1)(4),
故选:C

点评 本题考查的知识点是命题的真假判断与应用,数列极限的定义,斜率与倾斜角的关系,向量的夹角,轨迹方程,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xsinθ+cosθ,其中θ∈[0,2π).
(Ⅰ)若f(x)在(-∞,+∞)为减函数,求θ的取值范围;
(Ⅱ)若函数f(x)为奇函数,求lnf(sinθ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=x4+2x2-1的值域[-1,+∞);函数y=$\frac{1}{{x}^{2}+1}$的值域(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一几何体的三视图如图所示,则该几何体的表面积为(  )
A.20B.24C.16D.$16+\frac{3}{2}\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若直线l1:mx+y-1=0与直线l2:x+(m-1)y+2=0垂直,则实数m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x1和x2是方程x2+7x+1=0的两个根,则${x}_{1}^{2}$+x${\;}_{2}^{2}$=47.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,满足“f(xy)=f(x)+f(y)”的单调递减函数是(  )
A.f(x)=lnxB.f(x)=-x3C.f(x)=log${\;}_{\frac{1}{2}}$xD.f(x)=3-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设i为虚数单位,如果复数z满足(1-2i)z=5i,那么z的虚部为(  )
A.-1B.1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.我们将方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)叫作椭圆的标准方程,其中c2=a2-b2(用a、b表示).

查看答案和解析>>

同步练习册答案