(本小题满分14分)(注意:仙中、一中、八中的学生三问全做,其他学校的学生只做前两问)
已知函数![]()
(Ⅰ)若
,试确定函数
的单调区间;
(Ⅱ)若
,且对于任意
,
恒成立,试确定实数
的取值范围;
(Ⅲ)设函数
,求证:
.
(Ⅰ)
的单调递增区间是
,
的单调递减区间是
.
(Ⅱ)实数
的取值范围是
.(Ⅲ)见解析。
【解析】本试题主要是考查了导数在研究函数中的运用。
(1)因为由
得
,所以
.然后根据导数的符号判定单调性得到及结论
(2)由
可知
是偶函数.
于是
对任意
成立等价于
对任意
成立.然后求解导数,分析得到参数的范围。
(3)
,
![]()
,
运用放缩法得到结论。
解:(Ⅰ)由
得
,所以
.
由
得
,故
的单调递增区间是
,
由
得
,故
的单调递减区间是
.(6分)(3分)
(Ⅱ)由
可知
是偶函数.
于是
对任意
成立等价于
对任意
成立.(8分)(5分)
由
得
.
①当
时,
. 此时
在
上单调递增.
故
,符合题意. (10分)(7分)
②当
时,
.当
变化时
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
|
|
单调递减 |
极小值 |
单调递增 |
由此可得,在
上,
.
依题意,
,又
.(13分)(9分)
综合①,②得,实数
的取值范围是
.(14分)(10分)
(Ⅲ)
,
![]()
,
,
![]()
由此得,
![]()
故
.((14分)
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com