精英家教网 > 高中数学 > 题目详情
2.如图,在三棱锥S-ABC中,AS=AB,CS=CB,点E,F,G分别是棱SA,SB,SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)SB⊥AC.

分析 (1)证明EF∥平面ABC,EG∥平面ABC,即可证明平面EFG∥平面ABC;
(2)连接AF,CF,转化证明SB⊥平面AFC,即可得证SB⊥AC.

解答 证明:(1)∵E、G分别为SA、SC的中点,
∴EF、EG分别是△SAB、△SAC的中位线,可得EF∥AB且EG∥AC.
∵EF?平面ABC,AB?平面ABC,
∴EF∥平面ABC,同理可得EG∥平面ABC
又∵EF、EG是平面EFG内的相交直线,
∴平面EFG∥平面ABC;
(2)连接AF,CF,
∵AS=AB,CS=CB,
∴SB⊥AF,SB⊥FC,
∵AF∩CF=F,
∴SB⊥平面AFC,
∵AC?平面AFC,
∴SB⊥AC.

点评 本题考查了线面、面面平行的判定,考查空间直线的垂直的判断,运用直线与平面的垂直转化证明,属于中档题,掌握好基本定理即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在?ABCD中,AB=AC=1,∠ACD=90°,将它沿着对角线AC折起,使AB与CD成60°角,则BD的长度为(  )
A.2B.2或$\sqrt{2}$C.$\sqrt{2}$D.3$\sqrt{2}$或2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=f(n),满足f(0)=3,且f (n)=nf(n-1),n∈N+,则f(3)=(  )
A.6B.9C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=2${\;}^{1-{x}^{2}}$的部分图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)和圆O:x2+y2=a2,F1(-1,0),F2(1,0)分别是椭圆的左、右两焦点,过F1且倾斜角为α$({α∈({0,\frac{π}{2}}]})$的动直线l交椭圆C于A,B两点,交圆O于P,Q两点(如图所示,点A在x轴上方).当α=$\frac{π}{4}$时,弦PQ的长为$\sqrt{14}$. 
(1)求圆O与椭圆C的方程;
(2)若2|BF2|=|AF2|+|AB|,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于二次函数,f(x)=x2+2x+3
(1)指出图象的开口方向、对称轴方程、顶点坐标
(2)画出它的图象,分析函数的单调区间
(3)若x∈[-3,4],求函数的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C的极坐标方程为ρ=4cosθ-6sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=4+tcosθ}\\{y=tsinθ}\end{array}\right.$(t为参数).若直线l与圆C相交于不同的两点P,Q.
(1)写出圆C的直角坐标方程,并求圆心的坐标与半径;
(2)若弦长|PQ|=4,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,则复数$\frac{1+i}{i}$=(  )
A.1+iB.1-iC.1+$\frac{i}{2}$D.1-$\frac{i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.当x=2时,下面的程序运行的结果是15.

查看答案和解析>>

同步练习册答案