精英家教网 > 高中数学 > 题目详情
7.对于二次函数,f(x)=x2+2x+3
(1)指出图象的开口方向、对称轴方程、顶点坐标
(2)画出它的图象,分析函数的单调区间
(3)若x∈[-3,4],求函数的最大值及最小值.

分析 (1)利用二次函数的简单性质写出图象的开口方向、对称轴方程、顶点坐标.
(2)画出函数的图象,判断单调区间即可.
(3)利用函数的图象,求解函数的最值即可.

解答 解:(1)二次函数,f(x)=x2+2x+3
图象的开口方向向上、对称轴方程x=-1、顶点坐标(-1,2)
(2)画出它的图象如图:

函数的单调增区间:[-1,+∞);单调减区间为:(-∞,-1)
(3)若x∈[-3,4],函数的最大值f(4)=27,最小值f(-1)=2.

点评 本题考查二次函数的简单性质的应用,函数的图象,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(1)求f(x)的定义域.
(2)若f(a)=2,求a的值;
(3)求证:f($\frac{1}{x}$)=-f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|x-1|-2|x+1|的最大值为k.
(1)求k的值;
(2)若a,b,c∈R,$\frac{{a}^{2}{+c}^{2}}{2}$+b2=k,求b(a+c)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数f(x)满足f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)当x∈[-2,4]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥S-ABC中,AS=AB,CS=CB,点E,F,G分别是棱SA,SB,SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)SB⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$与双曲线$\frac{x^2}{m}-\frac{y^2}{8}=1$有共同的焦点F1,F2,两曲线的一个交点为P,则$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.给出下列命题:
①“若a≥0,则x2+x-a=0有实根”的逆否命题为真命题:
②命题“?x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是a≥4;
③命题“?x∈R,使得x2-2x+1<0”的否定是真命题;
④命题p:函数y=ex+e-x为偶函数;命题q:函数y=ex-e-x在R上为增函数,则p∧(?q)为真命题.期中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(注:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
(1)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)试预测加工10个零件需要多少小时?
(3)此回归方程拟合效果如何?
零件个数x(个)2345
加工时

]y(小时)
2.5344.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设实数x,y满足约束条件$\left\{\begin{array}{l}{x-2y≥0}\\{y≥x-2}\\{y≥2-x}\end{array}\right.$,则z=2x+y的最大值为(  )
A.10B.8C.$\frac{10}{3}$D.$\frac{8}{3}$

查看答案和解析>>

同步练习册答案