分析 (1)根据分段函数的单调性求出函数的最大值,即可求出k的值,
(2)根据基本不等式即可求出答案.
解答 解:(1)由于f(x)=$\left\{\begin{array}{l}{-x-3,x≥1}\\{-3x-1,-1<x<1}\\{x+3,x≤-1}\end{array}\right.$,
当x≥1时,函数的最大值为-1-4=-4,
当-1<x<1时,f(x)<f(-1)=3-1=2,
当x≤-1时,f(x)max=f(-1)=-1+3=2,
所以k=f(x)max=f(-1)=2.
(2)由已知R,$\frac{{a}^{2}{+c}^{2}}{2}$+b2=2,有(a2+b2)+(b2+c2)=4,
因为a2+b2≥2ab(当a=b取等号),b2+c2≥2bc(当b=c取等号),
所以a2+b2)+(b2+c2)=4≥(ab+bc),即ab+bc≤2,
故b(a+c)的最大值是2
点评 本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容,重点考查考生的化归与转化思想.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若x∈R,则$x+\frac{4}{x}≥4$ | B. | 若x∈R,则${x^2}+2+\frac{1}{{{x^2}+2}}≥2$ | ||
| C. | 若x∈R,则${x^2}+1+\frac{1}{{{x^2}+1}}≥2$ | D. | 若a、b为正实数,则$\frac{{\sqrt{a}+\sqrt{b}}}{2}≥\sqrt{ab}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{5}$ | B. | $\frac{7}{5}\sqrt{5}$ | C. | $\frac{17}{5}$ | D. | $\frac{17}{5}\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com