精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(1)求f(x)的定义域.
(2)若f(a)=2,求a的值;
(3)求证:f($\frac{1}{x}$)=-f(x)

分析 (1)根据分母不是0,求出函数的定义域即可;(2)令2=$\frac{1{+a}^{2}}{1{-a}^{2}}$,解出即可;(3)令x=$\frac{1}{x}$,带入f(x)的解析式,整理即可.

解答 解:(1)∵函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$,
故1-x2≠0,解得:x≠±1,
故函数的定义域是{x|x≠±1};
(2)若f(a)=2=$\frac{1{+a}^{2}}{1{-a}^{2}}$,
即1+a2=2-2a2
解得:a=±$\frac{\sqrt{3}}{3}$;
(3)f($\frac{1}{x}$)=$\frac{1+\frac{1}{{x}^{2}}}{1-\frac{1}{{x}^{2}}}$=$\frac{{x}^{2}+1}{{x}^{2}-1}$=-f(x).

点评 本题考查了求函数的定义域问题,考查函数求值问题,考查等式的证明,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.直线y=kx+3(k≠0)与圆(x-3)2+(y-2)2=4相交于A、B两点,若$|AB|=2\sqrt{3}$,则k的值为$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从集合{a,b,c,d,e}的所有子集中,任取一个,所取集合恰是集合{a,b,c}子集的概率是(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知角α(0<α<$\frac{π}{2}$)的终边经过点(cos2β,1+sin3βcosβ-cos3βsinβ),($\frac{π}{2}$<β<π,且β≠$\frac{3π}{4}$),则α-β=(  )
A.-$\frac{7π}{4}$B.-$\frac{3π}{4}$C.-$\frac{π}{4}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在?ABCD中,AB=AC=1,∠ACD=90°,将它沿着对角线AC折起,使AB与CD成60°角,则BD的长度为(  )
A.2B.2或$\sqrt{2}$C.$\sqrt{2}$D.3$\sqrt{2}$或2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有
①2是函数f(x)的周期;
②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;
③函数f(x)的最大值是1,最小值是0.
其中所有正确的命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是$\frac{15}{28}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列不等式中,正确的是(  )
A.若x∈R,则$x+\frac{4}{x}≥4$B.若x∈R,则${x^2}+2+\frac{1}{{{x^2}+2}}≥2$
C.若x∈R,则${x^2}+1+\frac{1}{{{x^2}+1}}≥2$D.若a、b为正实数,则$\frac{{\sqrt{a}+\sqrt{b}}}{2}≥\sqrt{ab}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于二次函数,f(x)=x2+2x+3
(1)指出图象的开口方向、对称轴方程、顶点坐标
(2)画出它的图象,分析函数的单调区间
(3)若x∈[-3,4],求函数的最大值及最小值.

查看答案和解析>>

同步练习册答案