精英家教网 > 高中数学 > 题目详情
19.给出下列命题:
①“若a≥0,则x2+x-a=0有实根”的逆否命题为真命题:
②命题“?x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是a≥4;
③命题“?x∈R,使得x2-2x+1<0”的否定是真命题;
④命题p:函数y=ex+e-x为偶函数;命题q:函数y=ex-e-x在R上为增函数,则p∧(?q)为真命题.期中正确命题的序号是①③.

分析 ①根据逆否命题的等价性进行判断,
②根据充分条件和必要条件的定义进行判断,
③根据含有量词的命题的否定进行判断,
④根据复合命题真假关系进行判断.

解答 解:①“若a≥0,则判别式△=1+4a≥0,则x2+x-a=0有实根”,即原命题为真命题,则命题的逆否命题为真命题:故①正确,
②命题“?x∈[1,2],x2-a≤0”为真命题,则a≥x2
即a≥4,
则a≥4是命题为真命题的充要条件,故②错误;
③命题“?x∈R,使得x2-2x+1<0”的否定是“?x∈R,使得x2-2x+1≥0”,
∵x2-2x+1=(x-1)2≥0恒成立,则命题的否定是真命题;故③正确,
④命题p:函数y=ex+e-x为偶函数正确;
命题q:函数y=ex-e-x=ex-$\frac{1}{{e}^{x}}$在上为增函数,则p∧(?q)为假命题.故④错误,
故正确命题的序号是 ①③,
故答案为:①③

点评 本题主要考查命题的真假判断,涉及知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是$\frac{15}{28}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=2${\;}^{1-{x}^{2}}$的部分图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于二次函数,f(x)=x2+2x+3
(1)指出图象的开口方向、对称轴方程、顶点坐标
(2)画出它的图象,分析函数的单调区间
(3)若x∈[-3,4],求函数的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C的极坐标方程为ρ=4cosθ-6sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=4+tcosθ}\\{y=tsinθ}\end{array}\right.$(t为参数).若直线l与圆C相交于不同的两点P,Q.
(1)写出圆C的直角坐标方程,并求圆心的坐标与半径;
(2)若弦长|PQ|=4,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,若3sinC=2sinB,点E,F分别是AC,AB的中点,则$\frac{BE}{CF}$的取值范围为$(\frac{1}{4},\frac{7}{8})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,则复数$\frac{1+i}{i}$=(  )
A.1+iB.1-iC.1+$\frac{i}{2}$D.1-$\frac{i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点P位椭圆C:$\frac{x^2}{4}+\frac{y^2}{9}=1$上任意一点,则P到直线l:2x-y=12的距离的最小值为(  )
A.$\frac{7}{5}$B.$\frac{7}{5}\sqrt{5}$C.$\frac{17}{5}$D.$\frac{17}{5}\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是(  )
A.1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=2-$\frac{1}{{2}^{n}}$B.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$<1
C.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1D.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$>1

查看答案和解析>>

同步练习册答案