精英家教网 > 高中数学 > 题目详情
20.设F1、F2是椭圆$\frac{x^2}{16}$+$\frac{y^2}{4}$=1的两焦点,P为椭圆上的点,若PF1⊥PF2,则△PF1F2的面积为(  )
A.8B.$4\sqrt{2}$C.4D.$2\sqrt{2}$

分析 根据椭圆的定义和勾股定理建立关于m、n的方程组,求得|PF1|•|PF2|=8,结合直角三角形的面积公式,可得△PF1F2的面积S=$\frac{1}{2}$|PF1|•|PF2|,求得△PF1F2的面积.

解答 解:由椭圆$\frac{x^2}{16}$+$\frac{y^2}{4}$=1,可知a=4,b=2,可得c2=a2-b2=12,即c=2$\sqrt{3}$,
设|PF1|=m,|PF2|=n,
由椭圆的定义可知:m+n=2a=8,
∵PF1⊥PF2,得∠F1PF2=90°,
由勾股定理可知:m2+n2=(2c)2
∴(m+m)2-2mn=4c2
则64-2mn=48
解得:mn=8,
∴|PF1|•|PF2|=8.
∴△PF1F2的面积S=$\frac{1}{2}$|PF1|•|PF2|=$\frac{1}{2}$×8=4.
故选C.

点评 本题给出椭圆的焦点三角形的面积,考查勾股定理、椭圆的定义和简单几何性质等知识的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.计算:(0.0081)${\;}^{-\frac{1}{4}}}$-10×0.027${\;}^{\frac{1}{3}}}$+lg$\frac{1}{4}$-lg25(  )
A.-$\frac{10}{3}$B.$\frac{25}{3}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(Ⅰ) 已知lg2=a,lg3=b,试用a,b表示log1615;
(Ⅱ)若a>0,b>0,化简 $\frac{{(2{a^{\frac{2}{3}}}{b^{\frac{1}{2}}})(-6{a^{\frac{1}{2}}}{b^{-\;\frac{1}{3}}})}}{{-3\root{6}{ab}}}-(4a-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+2x-3,x∈[0,2],则函数f(x)的值域为[-3,5]..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设i是虚数单位,则$\frac{1-i}{1+i}$=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.原命题为:“若x=1,则x2=1”.
(1)写出原命题的逆命题、否命题和逆否命题,并判断这四个命题的真假性;
(2)写出原命题的否定,并判断其真假性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若-1<x<1,则y=$\frac{x}{x-1}$+x的最大值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}中,前n项和为Sn,若a3+a9=6,则S11=(  )
A.12B.33C.66D.99

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=2sin(2x+φ-$\frac{π}{6}$)(0<φ<π)是偶函数,则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案