【题目】已知函数
(
且
).
(1)判断
的奇偶性并证明;
(2)若
,判断
在
的单调性并用复合函数单调性结论加以说明;
(3)若
,是否存在
,使
在
的值域为
?若存在,求出此时
的取值范围;若不存在,请说明理由.
【答案】(1)
是奇函数,证明见解析;(2)
在
上单调递减,见解析(3)存在,
.
【解析】
(1)根据奇函数的定义可判断该函数为奇函数.
(2)令
,可判断此函数为增函数,而外函数
为减函数,由复合函数的单调性的判断方法可知原来的函数为
上的减函数.
(3)根据函数的单调性可把
的存在性问题转化为方程
有两正根,利用根分布可求实数
的取值范围.
(1)
是奇函数,证明如下:
由
解得
或
,
所以
的定义域为
,关于原点对称.
∵![]()
,
故
为
上的奇函数.
(2)令
,则
在
上为单调递增函数.
因为
,故
为减函数,
故复合函数
为
上为单调递减函数.
(3)由(2)知,当
时,
在
上单调递减,则
.
假设存在
,使
在
的值域为
.
则有
,∴
.
所以
,
是方程
的两正根,
整理得
在
有2个不等根
和
.
令
,则
在
有2个零点,
,解得
,故
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
如图,已知抛物线
,过点
任作一直线与
相交于
两点,过点
作
轴的平行线与直线
相交于点
(
为坐标原点).
![]()
(1)证明:动点
在定直线上;
(2)作
的任意一条切线
(不含
轴)与直线
相交于点
,与(1)中的定直线相交于点
,证明:
为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列
和等比数列
中,
,
,
是
前
项和.
(1)若
,求实数
的值;
(2)是否存在正整数
,使得数列
的所有项都在数列
中?若存在,求出所有的
,若不存在,说明理由;
(3)是否存在正实数
,使得数列
中至少有三项在数列
中,但
中的项不都在数列
中?若存在,求出一个可能的
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
经过定点
,且与直线
相切,设动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设过点
的直线
,
分别与曲线
交于
,
两点,直线
,
的斜率存在,且倾斜角互补,证明:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的顶点在原点,焦点在
轴上,且抛物线上有一点
到焦点的距离为5.
(1)求该抛物线
的方程;
(2)已知抛物线上一点
,过点
作抛物线的两条弦
和
,且
,判断直线
是否过定点?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com