精英家教网 > 高中数学 > 题目详情
3.下列函数是偶函数的是(  )
①f(x)=lg|x|;②f(x)=ex+e-x;③f(x)=x2(x∈N);④f(x)=x-$\sqrt{{x}^{2}}$.
A.①②B.①③C.②④D.①④

分析 利用偶函数的定义,分别进行判断,即可得出结论.

解答 解:①f(-x)=lg|-x|=lg|x|=f(x),所以函数是偶函数;
②f(-x)=e-x+ex=f(x),所以函数是偶函数;
③f(x)=x2(x∈N)定义域不关于原点对称,不是偶函数;
④f(x)=x-$\sqrt{{x}^{2}}$=x-|x|,f(-x)≠f(x),不是偶函数.
故选A.

点评 本题考查偶函数的定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.定义$\frac{n}{{{p_1}+{p_2}+{p_3}+…+{p_n}}}$为n个实数P1.P2.….Pn的“均倒数”.已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+a}$,前n项和Sn≥S5恒成立,则实数a的取值范围是(  )
A.(-18,-16)B.[-18,-16]C.(-22,-18)D.(-20,-18)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.各项均为正数的等比数列{an}满足a2=3,a4-2a3=9,
(1)求数列{an}的通项公式;
(2)设bn=(n+1)•log3an+1,数列$\left\{{\frac{1}{b_n}}\right\}$前n项和$T_n^{\;}$,在(1)的条件下,证明不等式Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若点(a,b)在函数f(x)=lnx的图象上,则下列点中不在函数f(x)图象上的是(  )
A.($\frac{1}{a}$,-b)B.(a+e,1+b)C.($\frac{e}{a}$,1-b)D.(a2,2b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设P为椭圆$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1(a>b>0)上任一点,F1,F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为$\frac{\sqrt{3}}{2}$. 
(1)求椭圆的标准方程;
(2)设点E的轨迹为曲线C1,直线l:y=x+m交C1于M,N两点,线段MN的垂直平分线经过点P(1,0),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-x+1.
(1)求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)证明:不等式lnx≤x-1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为T,其范围为[0,10],分别有五个级别;T∈[0,2]畅通;T∈[2,4]基本畅通;T∈[4,6]轻度拥堵;T∈[6,8]中度拥堵;T∈[8,10]严重拥堵.晚高峰时段(T≥2),从某市交能指挥中心选取了市区20个交能路段,依据其交能拥堵指数数据绘制的直方图如图所示,用分层抽样的方法从交通指数在[4,6],[6,8],[8,10]的路段中共抽取6个中段,则中度拥堵的路段应抽取3个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设等差数列{an}的前n项和为Sn,a22=37,S22=352.
(1)求数列{an}的通项公式;
(2)若bn=an•2${\;}^{{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.F1、F2分别是椭圆x2+2y2=1的左、右焦点,点P在椭圆上,线段PF2与y轴的交点为M,且$\overrightarrow{{F}_{1}M}$=$\frac{1}{2}$($\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{{F}_{1}P}$),则点M到坐标原点O的距离是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步练习册答案