精英家教网 > 高中数学 > 题目详情
已知向量
(Ⅰ)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足的概率;
(Ⅱ)若x,y∈[1,6],求满足的概率.
【答案】分析:(1)本小题考查的知识点是古典概型,关键是要找出满足条件满足的基本事件个数,及总的基本事件的个数,再代入古典概型公式进行计算求解.
(2)本小题考查的知识点是几何概型的意义,关键是要画出满足条件的图形,结合图形分析,找出满足条件的点集对应的图形面积,及图形的总面积.
解答:解:(Ⅰ)设(x,y)表示一个基本事件,
则抛掷两次骰子的所有基本事件有(1,1),(1,2),
(1,3),(1,4),(1,5),(1,6),(2,1),
(2,2),,(6,5),(6,6),共36个.(2分)
用A表示事件“”,即x-2y=-1
则A包含的基本事件有(1,1),(3,2),(5,3),共3个.
∴P(A)=
答:事件“”的概率为
xyOOx=1Ox=6Oy=1Oy=6Ox-2y=0O

(Ⅱ)用B表示事件“”,即x-2y>0
试验的全部结果所构成的区域为
{(x,y)|1≤x≤6,1≤y≤6}
构成事件B的区域为
{(x,y)|1≤x≤6,1≤y≤6,x-2y>0}
如图所示:所以所求的概率为P(B)=
答:事件“”的概率为
点评:古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同.弄清一次试验的意义以及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的关键.解决问题的步骤是:计算满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式进行求解.
几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量满足|
a
|=2|
b
|,若p:关于x的方程x2+|
a
|x+
a
b
=0没有实数根;q:向量
a
b
的夹角θ∈[0,
π
6
),则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1-λ)b∈[a,b],已知向量
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k
恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x-
1
x
在[1,2]上“k阶线性近似”,则实数k的取值范围为(  )
A、[0,+∞)
B、[
1
12
,+∞)
C、[
3
2
+
2
,+∞)
D、[
3
2
-
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a=(
1
2
,-
3
2
)
,若向量b与a反向,且|b|=2,则向量
b
的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
n
,命题“若
m
=
n
,则|
m
|=|
n
|.”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa+(1-λ)b∈[a,b],已知向量
ON
OA
+(1-λ)
OB
,若不等式|
MN
|≤k
恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x-
1
x
在[1,2]上“k阶线性近似”,则实数k的取值范围为
k≥
3
2
-
2
k≥
3
2
-
2

查看答案和解析>>

同步练习册答案