精英家教网 > 高中数学 > 题目详情

设数列数学公式,数列{bn}满足:bn=an+1-an
(I)求a0,a2
(II)当n∈N*时,求证:数列{bn}为等差数列;
(III)设数学公式,求证:数学公式

(I)解:∵
∴令m=n,可得a0=0;令n=0,可得a2m=4am-2m
令m=1,可得a2=4a1-2=6;
(II)证明:令m=n+2,则
∵a2m=4am-2m
∴a2n+1=4an+1-2(n+1),a2n+4=4an+2-2(n+2),a2n=4an-2n
∴an+2=2an+1-an+2
∴(an+2-an+1)-(an+1-an)=2
∵bn=an+1-an
∴bn+1-bn=2
∴数列{bn}为首项为a2-a1=4,公差为2的等差数列;
(III)证明:由(II)知bn=2n+2
=2n-1

=

又∵
-(1-)>

分析:(I)根据数列递推式,利用赋值法,可得结论;
(II)根据数列递推式,令m=n+2,进而可得an+2=2an+1-an+2,由此可证数列{bn}为等差数列;
(III)确定数列的通项,求出数列的和,再进行放缩,即可证得结论.
点评:本题考查数列递推式,考查等差数列的证明,考查数列的通项与求和,考查不等式的证明,正确确定数列的通项,利用放缩法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于数列{un}若存在常数M>0,对任意的n∈N',恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M
则称数列{un}为B-数列
(1)首项为1,公比为q(|q|<1)的等比数列是否为B-数列?请说明理由;
(2)设Sn是数列{xn}的前n项和,给出下列两组论断;
A组:①数列{xn}是B-数列      ②数列{xn}不是B-数列
B组:③数列{Sn}是B-数列      ④数列{Sn}不是B-数列
请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题.
判断所给命题的真假,并证明你的结论;
(3)若数列{an},{bn}都是B-数列,证明:数列{anbn}也是B-数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an},{bn}的各项均为正数,若对任意的正整数n,都有an,bn2,an+1成等差数列,且bn2,an+1,bn+12成等比数列.
(Ⅰ)求证数列{bn}是等差数列;
(Ⅱ)如果a1=1,b1=
2
,比较2n与2an的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项和,已知Sn=2an-1(n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn•a2n+1=1,求
limn→∞
(b1+b2+…+bn)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前N项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3…).
(Ⅰ)求证:数列{Sn+1}为等比数列;
(Ⅱ)求通项公式an
(Ⅲ)若数列{
bnan
}是首项为1,公差为2的等差数列,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•资中县模拟)已知二次函数f(x)=x2-mx+m(x∈R)同时满足:(1)不等式f(x)≤0的解集有且只有一个元素;(2)在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n),bn=1-
8-man
,我们把所有满足bi•bi+1<0的正整数i的个数叫做数列{bn}的异号数.根据以上信息,给出下列五个命题:
①m=0;
②m=4;
③数列{an}的通项公式为an=2n-5;
④数列{bn}的异号数为2;
⑤数列{bn}的异号数为3.
其中正确命题的序号为
②⑤
②⑤
.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案