精英家教网 > 高中数学 > 题目详情
8.已知i是虚数单位,若$\overline{z}$=$\frac{1+i}{1-i}$,则z2016=(  )
A.iB.-iC.1D.-1

分析 利用复数的除法运算法则化简复数,然后利用复数的单位幂运算求解即可.

解答 解:$\overline{z}$=$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=i,
z=-i,
z2016=(-i)2016=1.
故选:C.

点评 本题考查复数的代数形式的混合运算,复数单位的幂运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.直线通过点(1,3)且与两坐标轴的正半轴所围成的三角形面积为6,则直线方程是(  )
A.3x+y-6=0B.3x-y=0C.x+3y-10=0D.x-3y+8=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=sin2(x+$\frac{π}{12}$)+cos2(x-$\frac{π}{12}$)-1是(  )
A.周期为2π的偶函数B.周期为2π的奇函数
C.周期为π的偶函数D.周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2sin 2($\frac{π}{4}$+x)-$\sqrt{3}$ cos2x-1,x∈R,则f(x)的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别是a,b,c,若ccosA,bcosB,acosC成等差数列.
(Ⅰ)求∠B;
(Ⅱ)若a+c=$\frac{3\sqrt{3}}{2}$,b=$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)(π)0+2-2×(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$
(2)2log510+log50.25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\frac{1}{x+1}$的定义域是{x|x≠-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overline z=\frac{1}{i-1}$,则|z|=(  )
A.2B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合$A=[1,\frac{3}{2})$,$B=[\frac{3}{2},2]$,函数$f(x)=\left\{{\begin{array}{l}{x-\frac{1}{2},}&{x∈A}\\{2(2-x),}&{x∈B}\end{array}}\right.$,若x0∈A,且$f[f({x_0})+1]∈[{0,\frac{1}{2}})$,则x0的取值范围是(  )
A.($1,\frac{5}{4}$]B.($\frac{5}{4},\frac{3}{2}$]C.$(\frac{5}{4},\frac{13}{8})$D.($\frac{5}{4},\frac{3}{2}$)

查看答案和解析>>

同步练习册答案