精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2sin 2($\frac{π}{4}$+x)-$\sqrt{3}$ cos2x-1,x∈R,则f(x)的最小值为-2.

分析 利用和差公式、倍角公式、三角函数的单调性即可得出.

解答 解:f(x)=2sin 2($\frac{π}{4}$+x)-$\sqrt{3}$ cos2x-1=$1-cos(\frac{π}{2}+2x)$)-$\sqrt{3}$ cos2x-1
=sin2x-$\sqrt{3}$ cos2x
=2$sin(2x-\frac{π}{3})$≥-2,当$sin(2x-\frac{π}{3})$=-1时取等号.
故答案为:-2.

点评 本题考查了和差公式、倍角公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.证明:$\frac{sin(α+2β)}{sinβ}$-2cos(α+β)=$\frac{sinα}{sinβ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,A(2,1),B(3,2),C(-3,-1),AD为BC边上的高,求点D的坐标与|$\overrightarrow{AD}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=-x2+2x,g(x)=$\left\{\begin{array}{l}{f(x)}&{x≤a}\\{g(x-1)-1}&{x>a}\end{array}\right.$,关于x的方程g(x)=t对于任意的t<1都恰有两个不同的解,则实数a取值集合是{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}中,a1=2,an+1=an+cn(c是不为0的常数,n∈N),且a1,a2,a3成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}-c}{n-{c}^{n}}$,Tn为数列{bn}的前n项和,证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,若$\overline{z}$=$\frac{1+i}{1-i}$,则z2016=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数$y={(\frac{1}{2})^{{x^2}+1}}$的值域是$(0,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},则$\frac{{{a^2}+{b^2}+7}}{a+c}$(其中a+c≠0)的取值范围为(-∞,-6]∪[6,+∞).

查看答案和解析>>

同步练习册答案