精英家教网 > 高中数学 > 题目详情
6.已知关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},则$\frac{{{a^2}+{b^2}+7}}{a+c}$(其中a+c≠0)的取值范围为(-∞,-6]∪[6,+∞).

分析 由条件利用二次函数的性质可得ac=-1,ab=1,再根据则$\frac{{{a^2}+{b^2}+7}}{a+c}$=(a-b)+$\frac{9}{a-b}$,利用基本不等式求得它的范围.

解答 解:根据关于x的一元二次不等式ax2+2x+b>0的解集为{x|x≠c},
可得a>0,对应的二次函数的图象的对称轴为x=-$\frac{1}{a}$=c,△=4-4ab=0,∴ac=-1,ab=1,∴c=-$\frac{1}{a}$,b=$\frac{1}{a}$.
则$\frac{{{a^2}+{b^2}+7}}{a+c}$=$\frac{{(a-b)}^{2}+9}{a-b}$=(a-b)+$\frac{9}{a-b}$,
当a-b>0时,由基本不等式求得(a-b)+$\frac{9}{a-b}$≥6,
当a-b<0时,由基本不等式求得-(a-b)-$\frac{9}{a-b}$≥6,即(a-b)+$\frac{9}{a-b}$≤-6
故$\frac{{{a^2}+{b^2}+7}}{a+c}$(其中a+c≠0)的取值范围为:(-∞,-6]∪[6,+∞),
故答案为:(-∞,-6]∪[6,+∞).

点评 本题主要考查二次函数的性质,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=2sin 2($\frac{π}{4}$+x)-$\sqrt{3}$ cos2x-1,x∈R,则f(x)的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overline z=\frac{1}{i-1}$,则|z|=(  )
A.2B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在矩形ABCD中,AB=2,$BC=\sqrt{3}$,E是CD的中点,那么$\overrightarrow{AE}•\overrightarrow{DC}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A={-1,0,1},B={x|x2+x≤0},则A∩B={-1,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图可能是下列哪个函数的图象(  )
A.y=x2-x2-1B.y=$\frac{x}{lnx}$C.y=$\frac{{2}^{x}sinx}{{4}^{x}+1}$D.y=(x2-2x)ax

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合$A=[1,\frac{3}{2})$,$B=[\frac{3}{2},2]$,函数$f(x)=\left\{{\begin{array}{l}{x-\frac{1}{2},}&{x∈A}\\{2(2-x),}&{x∈B}\end{array}}\right.$,若x0∈A,且$f[f({x_0})+1]∈[{0,\frac{1}{2}})$,则x0的取值范围是(  )
A.($1,\frac{5}{4}$]B.($\frac{5}{4},\frac{3}{2}$]C.$(\frac{5}{4},\frac{13}{8})$D.($\frac{5}{4},\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1-t}\\{y=3+2t}\end{array}\right.$(t是参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程是ρ=4cos(θ-$\frac{π}{2}$).
(1)求圆C的直角坐标方程;
(2)已知点P的直角坐标为(2,1)直线l与圆C交于A,B两点,求||PA|-|PB||

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若x轴的正半轴上的点M到原点的距离与到点(5,-3)的距离相等,则M点的坐标是(  )
A.(1,0)B.($\frac{3}{2}$,0)C.($\frac{17}{5}$,0)D.(±$\frac{17}{5}$,0)

查看答案和解析>>

同步练习册答案