精英家教网 > 高中数学 > 题目详情
已知F是双曲线
x2
4
-
y2
12
=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为(  )
A、7B、8C、9D、10
分析:求出右焦点H 的坐标,由双曲线的定义可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|,从而求得2a+|AH|的值.
解答:解:∵F是双曲线
x2
4
-
y2
12
=1的左焦点,∴a=2,b=2
3
,c=4,F(-4,0 ),右焦点为H(4,0),
由双曲线的定义可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|=4+
(4-1)2+(0-4)2
 
=4+5=9,
故选 C.
点评:本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,把|PF|+|PA|化为2a+|PH|+|PA|是
解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F是双曲线
x2
4
-
y2
12
=1
的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
x2
4
+y2=1

(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
中相类似的结论,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
4
-
y2
5
=1
右支上一点,F是该双曲线的右焦点,点M为线段PF的中点,若|OM|=3,则点P到该双曲线右准线的距离为(  )

查看答案和解析>>

科目:高中数学 来源:湛江二模 题型:单选题

已知F是双曲线
x2
4
-
y2
12
=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案