精英家教网 > 高中数学 > 题目详情
12.一支田径队有男运动员28人,女运动员21人,现按性别用分层抽样的方法,从中抽取14位运动员进行健康检查,则男运动员应抽取人数为(  )
A.6B.7C.8D.9

分析 根据田径队的男女运动员数目和用分层抽样要抽取的数目,得到每个个体被抽到的概率,利用每个个体被抽到的概率乘以男运动员的数目,得到结果.

解答 解:∵有男运动员28人,女运动员21人,
∴总体个数是29+21=49,
∵从全体队员中抽出一个容量为14人的样本
∴每个个体被抽到的概率是$\frac{14}{49}$=$\frac{2}{7}$
∴男运动员应抽28×$\frac{2}{7}$=8;
故选:C.

点评 本题主要考查了分层抽样,在抽样过程中每个个体被抽到的概率相等,这是解决这种问题的依据,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.用根式的形式表示下列各式(a>0):
${a}^{\frac{1}{2}}$,${a}^{\frac{3}{4}}$,${a}^{-\frac{3}{5}}$,${a}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c分别为△ABC三个内角A,B,C的对边,cosC+$\sqrt{3}$sinC=$\frac{b+c}{a}$;
(1)求A;
(2)若a=$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=x3+18x+17sinx,若对任意的θ∈R,不等式f(asinθ+2)+f(1+2cos2θ)≥0恒成立,则a的取值范围是-1≤a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知过点A(-2,m)和(m,10)的直线与直线2x-y-1=0平行,则m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=(sin A,cos A),$\overrightarrow{n}$=(1,-$\sqrt{3}$),$\overrightarrow{m}$⊥$\overrightarrow{n}$,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=$\sqrt{3}$(cos2x-sin2x)+4cos Asin xcos x(x∈[0,$\frac{π}{2}$])的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的偶函数满足f($\frac{3}{2}$+x)=f($\frac{3}{2}$-x),且f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+…+f(2016)的值为(  )
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,已知sin(C+$\frac{π}{6}$)=$\frac{b}{2a}$,则角A的值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个总体中有60个个体,随机编号为0,1,2,…59,依编号顺序平均分成6个小组,组号依次为1,2,3,…6.现用系统抽样方法抽取一个容量为6的样本,若在第1组随机抽取的号码为3,则在第5组中抽取的号码是(  )
A.33B.43C.53D.54

查看答案和解析>>

同步练习册答案