分析 通过求导数便可判断f(x)在R上单调递增,并且容易判断为奇函数,利用换元法并且借助于恒成立问题的解决方法得到答案.
解答 易知函数f(x)=x3+18x+17sinx为奇函数
∵f′(x)=3x2+18+17cosx>0
∴f(x)单调递增.
∵f(asinθ+2)+f(1+2cos2θ)≥0恒成立
∴f(asinθ+2))≥-f(1+2cos2θ)
f(asinθ+2)≥f(-1-2cos2θ)
asinθ+2≥-1-2cos2θ恒成立
即 4sin2θ-asinθ-5≤0,
设t=sinθ,t∈[-1,1];g(t)=4t2-at-5≤0,
g(-1)≤0且g(1)≤0
故答案为:-1≤a≤1
点评 本题考查函数单调性与奇偶性的综合,考查恒成立问题,考查分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (-∞,2) | C. | (2,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com