精英家教网 > 高中数学 > 题目详情

椭圆G:数学公式(a>b>0)的两个焦点F1(-c,0),F2(c,0),M是椭圆上一点.
(1)若M的坐标为(2,0),椭圆的离心率数学公式,求a,b的值;
(2)若数学公式
①求椭圆的离心率e的取值范围;
②当椭圆的离心率e取最小值时,点N(0,3)椭圆上的点的最远距离为数学公式,求此时椭圆G的方程.

解:(1)由椭圆G:(a>b>0)及椭圆上的一点M的坐标为(2,0)
可知a=2,
=,∴c=,b=1,∴椭圆的方程为
(2)①设M(x0,y0),


∴(x0+c,y0)•(x0-c,y0)=0,
∵0≤x0≤a2
,解得

②当时,设椭圆G的方程为
设H(x,y)为椭圆上一点,则|HN|2;;=x2+(y-3)2;;=-(y+3)2+2b2+18,(-b≤y≤b),
若0<b<3,|HN|2的最大值b2+6b+9=50得 (舍去),
若b≥3,|HN|2的最大值2b2+18=50得b2=16,∴所求的椭圆的方程为
分析:(1)由题意知,M的坐标为(2,0)即椭圆的长轴上的顶点,故 a=2,再由离心率的值求出半焦距c,从而求出b,即得
椭圆的标准方程.
(2)①设M的坐标,由若 和椭圆的方程,解出M的横坐标的平方,再利用M的横坐标的平方
大于或等于0,且小于或等于a2;,求出离心率的平方的范围,进而得到离心率的范围.
②当时,设椭圆G的方程(含参数b),设H(x,y)为椭圆上一点,化简|HN|2 ,利用其最大值,分类讨论求出参数
b的值,即得椭圆G的方程.
点评:本题考查用待定系数法求椭圆的标准方程,利用两个向量的数量积公式及椭圆的性质解决具体问题,体现了分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省济宁市鱼台一中高二(上)期末数学模拟试卷(理科)(解析版) 题型:解答题

如图椭圆G:(a>b>0)的两个焦点为F1(-c,0)、F2(c,0)和顶点B1、B2构成面积为32的正方形.
(1)求此时椭圆G的方程;
(2)设斜率为k(k≠0)的直线l与椭圆G相交于不同的两点A、B、Q为AB的中点,且P(0,-).问:A、B两点能否关于直线PQ对称.若能,求出kk的取值范围;
若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省合肥一中高(上)期末数学复习试卷3(理科)(解析版) 题型:解答题

如图椭圆G:(a>b>0)的两个焦点为F1(-c,0)、F2(c,0)和顶点B1、B2构成面积为32的正方形.
(1)求此时椭圆G的方程;
(2)设斜率为k(k≠0)的直线l与椭圆G相交于不同的两点A、B、Q为AB的中点,且P(0,-).问:A、B两点能否关于直线PQ对称.若能,求出kk的取值范围;
若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年人教A版高二(上)期中数学试卷(必修2)(解析版) 题型:解答题

椭圆G:(a>b>0)的两个焦点F1(-c,0),F2(c,0),M是椭圆上一点.
(1)若M的坐标为(2,0),椭圆的离心率,求a,b的值;
(2)若
①求椭圆的离心率e的取值范围;
②当椭圆的离心率e取最小值时,点N(0,3)椭圆上的点的最远距离为,求此时椭圆G的方程.

查看答案和解析>>

科目:高中数学 来源:2012年北京市顺义区高考数学一模试卷(文科)(解析版) 题型:解答题

已知椭圆G:(a>b>0)的离心率,且经过点
(Ⅰ)求椭圆G的方程;
(Ⅱ)设直线与椭圆G交于A、B两点,线段AB的垂直平分线交x轴于点T,当m变化时,求△TAB面积的最大值.

查看答案和解析>>

同步练习册答案