精英家教网 > 高中数学 > 题目详情
设函数f(x)=2
a
-x
 
-2k
a
x
 
(a>0且a≠1)在(-∞,+∞)上既是奇函数又是减函数,则g(x)=loga(x-k)的图象是(  )
分析:由f(x)为奇函数可得f(0)=0,由此求得k的值.再根据f(x)的单调性求得a的范围,可得g(x)的解析式.再根据对数函数的图象特征,得出结论.
解答:解:由函数f(x)=2
a
-x
 
-2k
a
x
 
(a>0且a≠1)在(-∞,+∞)上是奇函数,
可得f(0)=0,即 2-2k=0,解得 k=1,故f(x)=2a-x-2ax
再由f(x)是减函数,可得函数y=a-x是减函数,故a>1.
g(x)=loga(x-k)=g(x)=loga(x-1)的图象,是把函数y=logax的图象向右平移1个单位得到的,
故选A.
点评:本题主要考查函数的奇偶性和单调性的应用,对数函数的图象特征,函数图象的平移规律,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx,sinωx)
b
=(sinωx,
3
coxωx)
,其中ω>0,设函数f(x)=2
a
b
,已知f(x)的最小正周期为π.
(1)求f(x)的解析式;
(2)设g(x)=log2f(x),求g(x)的定义域和单调递增区间.
(3)证明:直线x=
6
是g(x)图象的一条对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-2a|,a∈R.
(1)若不等式f(x)<1的解集为{x|1<x<3},求a的值;
(2)若存在x?∈R,使得f(x)+x<3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2a-x-2kax(a>0且a≠1)在(-∞,+∞)上既是奇函数又是减函数,则g(x)=loga(x-k)的图象是
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
a
=(sinωx,sinωx)
b
=(sinωx,
3
coxωx)
,其中ω>0,设函数f(x)=2
a
b
,已知f(x)的最小正周期为π.
(1)求f(x)的解析式;
(2)设g(x)=log2f(x),求g(x)的定义域和单调递增区间.
(3)证明:直线x=
6
是g(x)图象的一条对称轴.

查看答案和解析>>

同步练习册答案