精英家教网 > 高中数学 > 题目详情
已知中心在坐标原点O,焦点在x轴上,长轴长是短轴长的2倍的椭圆经过点M=(2,1).
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l平行于OM,且与椭圆交于A、B两个不同点.
(ⅰ)若∠AOB为钝角,求直线l在y轴上的截距m的取值范围;
(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
分析:(Ⅰ)设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,利用长轴长是短轴长的2倍的椭圆经过点M(2,1),可建立几何量之间的关系,从而可得椭圆的方程;
(Ⅱ)(ⅰ)先假设l的方程为y=
1
2
x+m
,再与椭圆方程联立,将∠AOB为钝角,转化为
OA
OB
<0
且m≠0,利用韦达定理,即可求出直线l在y轴上的截距m的取值范围;
(ⅱ)依题意可知,直线MA、MB的斜率存在,分别记为k1,k2,证明k1+k2=0,即可得到直线MA、MB的倾斜角互补,从而可知直线MA、MB与x轴始终围成一个等腰三角形.
解答:(Ⅰ)解:设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,则
∵长轴长是短轴长的2倍的椭圆经过点M(2,1).
a=2b
4
a2
+
1
b2
=1
   (2分)
解得
a2=8
b2=2.
,故椭圆的方程为
x2
8
+
y2
2
=1
.(2分)
(Ⅱ)解:(ⅰ)由直线l平行于OM,得直线l的斜率k=kOM=
1
2

又l在y轴上的截距为m,所以l的方程为y=
1
2
x+m

y=
1
2
x+m
x2
8
+
y2
2
=1
得x2+2mx+2m2-4=0.
又直线l与椭圆交于A、B两个不同点,△=(2m)2-4(2m2-4)>0,于是-2<m<2.(3分)
∠AOB为钝角等价于
OA
OB
<0
且m≠0,
设A(x1,y1),B(x2,y2),
OA
OB
=x1x2+y1y2=x1x2+(
1
2
x1+m)(
1
2
x2+m)
=
5
4
x1x2+
m
2
(x1+x2)+m2<0

由韦达定理x1+x2=-2m,x1x2=2m2-4代入上式,
化简整理得m2<2,即-
2
<m<
2
,故所求范围是(-
2
,0)∪(0,
2
)
.(2分)
(ⅱ)证明:依题意可知,直线MA、MB的斜率存在,分别记为k1,k2
k1=
y1-1
x1-2
k2=
y2-1
x2-2
.(2分)
k1+k2=
y1-1
x1-2
+
y2-1
x2-2
=
(y1-1)(x2-2)+(y2-1)(x1-2)
(x1-2)(x2-2)
=
(
1
2
x1+m-1)(x2-2)+(
1
2
x2+m-1)(x1-2)
(x1-2)(x2-2)
=
x1x2+(m-2)(x1+x2)-4(m-1)
(x1-2)(x2-2)
=
2m2-4+(m-2)(-2m)-4(m-1)
(x1-2)(x2-2)
=
2m2-4-2m2+4m-4m+4
(x1-2)(x2-2)
=0

所以k1+k2=0,故直线MA、MB的倾斜角互补,
故直线MA、MB与x轴始终围成一个等腰三角形.                   (3分)
点评:本题考查椭圆的几何性质,考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是联立方程组,利用韦达定理解决直线与椭圆的位置关系问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点O的椭圆C经过点A(3
2
,4)
,点B(
10
,2
5
)

(1)求椭圆C的方程;
(2)已知圆M:x2+(y-5)2=9,双曲线G与椭圆C有相同的焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点,
( I)求椭圆C的方程;
( I I)问是否存在直线l:y=
32
x+t
,使直线l与椭圆C有公共点,且原点到直线l的距离为4?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010福建理数)17.(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案