精英家教网 > 高中数学 > 题目详情

已知数列{an}满足数学公式
(1)求a2,a3,a4的值;
(2)求证:数列{an-2}是等比数列;
(3)求an,并求{an}前n项和Sn

解:(1)∵数列{an}满足
.…(3分)
(2)∵
又a1-2=-1,
∴数列{an-2}是以-1为首项,为公比的等比数列.…(7分)
(注:文字叙述不全扣1分)
(3)由(2)得,…(9分)
.…(12分)
分析:(1)由数列{an}满足,分别令n=1,2,3,能求出a2,a3,a4的值.
(2)由,能够证明数列{an-2}是等比数列.
(3)由(2)得,由此能求出{an}前n项和Sn
点评:本题考查数列中各项的求法,考查等比数列的证明,考查数列的前n项和的求法.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案