精英家教网 > 高中数学 > 题目详情
设a,b,c是三角形ABC的边长,对任意实数x,f(x)=b2x2+(b2+c2-a2)x+c2有(  )
A、f(x)=0B、f(x)>0C、f(x)≥0D、f(x)<0
分析:根据余弦定理a2=b2+c2-2bccosA的式子,将函数化简为f(x)=b2x2+(2bccosA)x+c2,再根据二次函数的图象与性质加以计算,可得函数图象对应的抛物线开口向上且与x轴没有公共点,可得本题的答案.
解答:解:在△ABC中,根据余弦定理a2=b2+c2-2bccosA,
∴b2+c2-a2=2bccosA,
因此函数可化为:f(x)=b2x2+(2bccosA)x+c2
b2>0
△=4b2c2cos2A-4b2c2=4b2c2(cos2A-1)<0

∴函数y=f(x)的图象是开口向上的抛物线,且与x轴没有公共点.
由此可得:对任意实数x,f(x)>0恒成立.
故选:B
点评:本题给出与△ABC的三边a、b、c有关的二次函数,研究函数值的取值范围.着重考查了二次函数的图象与性质、余弦定理及其应用等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A、B、C是三角形的三个内角,下列关系恒成立的是(  )
A、cos(A+B)=cosC
B、sin(A+B)=sinC
C、tan(A+B)=tanC
D、sin
A+B
2
=sin
C
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设A,B,C是三角形的三边
(1)(文)若c=1,a,b是从{1,2,3,4,5,6}中任取的两个数(a,b可以相等),求a,b,c能构成三角形的概率;
(2)(文)若a,b是从(0,6)中任取的两个数(a,b可以相等),求构成以a为底边的等腰三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B、C是三角形的三个内角,下列关系恒等成立的是(    )

A.cos(A+B)=cosC                B.sin(A+B)=sinC

C.tan(A+B)=tanC                D.sin=sin

查看答案和解析>>

科目:高中数学 来源:2010-2011年内蒙古赤峰市高一下学期第一次月考考试数学试卷 题型:选择题

.设ABC是三角形的三个内角,下列关系恒成立的是( )

A.cos(A+B)=cosC                       B.sin(A+B)=sinC

C.tan(A+B)=tanC                       D.sin=sin

 

查看答案和解析>>

同步练习册答案