精英家教网 > 高中数学 > 题目详情
若抛物线y2=8x的焦点与双曲线
x2
m
-y2=1的右焦点重合,则双曲线的离心率为
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先确定抛物线的焦点坐标,可得双曲线的焦点坐标,从而可求双曲线的离心率.
解答: 解:抛物线y2=8x的焦点坐标为(2,0)
∵抛物线y2=8x的焦点与双曲线
x2
m
-y2=1的一个焦点重合,
∴m+1=4,∴m=3
∴e=
2
3
=
2
3
3

故答案为:
2
3
3
点评:本题考查抛物线的标准方程,考查抛物线与双曲线的几何性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+3a+b,定义域为[a-1,2a].
(1)若f(x)为偶函数,求a、b的值;
(2)若取(1)中求出的a值,求f(x)在[a-1,2a]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx-ax,g(x)=bxcosx(a∈R,b∈R).
(1)讨论函数f(x)在区间(0,π)上的单调性;
(2)若a=2b且a≥
2
3
,当x>0时,证明f(x)<g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α与平面β平行的条件可以是(  )
A、α内有无穷多条直线与β平行
B、直线a∥α,a∥β
C、直线a?α,直线b?β,且a∥β,b∥α
D、α内的任何直线都与β平行

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题中,不正确的个数为(  )
①|
a
|-|
b
|=|
a
+
b
|是
a
b
共线的充要条件;
②若
a
b
,则存在唯一的实数λ,使
a
b

③若
a
b
=0,
b
c
=0,则
a
=
c

④若{
a
b
c
}为空间的一个基底,则{
a
+
b
b
+
c
c
+
a
}构成空间的另一个基底; 
⑤|(
a
b
)•
c
|=|
a
|•|
b
|•|
c
|.
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

淮北市某小区为了解居民对“小区物业管理”的满意度,现随机抽取
20人进行调查,满分100分,调查得分制作为茎叶图如下:其中得分在80分以上则认为“满意”,得分在90分以上则认为“非常满意”.
(1)从被调查的20人中选取3人,求至少有1人“非常满意”的概率
(2)从被调查的20人中选取3人均认为“满意”,求恰有1人“非常满意”的概率;
(3)以这20人的调查情况来估计全市人民对“公交线路设置”的满意度,随机抽取3人,记其中“非常满意”的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

正项等差数列{an}中,已知a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列{bn}的前三项.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
1
an•(1+2log2
bn
5
)
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足na1+(n-1)a2+…+2an-1+an=(
2
3
n+(
2
3
n-1+…+
2
3
,数列{an}的前n项和为Sn,设bn=n•Sn
(1)求{an}的通项公式;
(2)求b1+b2+…+bn的值;
(3)是否存在正整数k,使得对任意的n∈N*都有bn≤bk成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥S-ABC的4个顶点和6条棱的中点共有10个点,其中4点共面有m组,从m组中任取一组,取到含点S组的概率等于(  )
A、
10
23
B、
10
21
C、
11
23
D、
5
11

查看答案和解析>>

同步练习册答案