精英家教网 > 高中数学 > 题目详情
a
=(2-x,x-1)
b
=(1,
2-x
x
)
,则使不等式
a
b
>0
成立的x的取值范围是
 
分析:根据所给的向量坐标,写出两个向量的数量积,使得数量积大于零,解关于变量x的不等式,本题出现的是一个分式不等式,解题时先要通分,再把商的形式变化为乘积形式,用穿根法写出不等式的解.
解答:解:∵
a
=(2-x,x-1)
b
=(1,
2-x
x
)

a
b
>0

∴2-x+(x-1)
2-x
x
>0,
(x-2)(2x-1)
x
< 0

∴x(x-2)(2x-1)<0,
用穿根法写出不等式的解,
x<0或
1
2
< x<2

故答案为:(-∞,0)∪(
1
2
,2)
点评:两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是区间D⊆[0,+∞)上的增函数.若f(x)可表示为f(x)=f1(x)+f2(x),其中f1(x)是D上的增函数,f2(x)是D上的减函数,且函数f2(x)的值域A⊆[0,+∞),则称函数f(x)的区间D上的“偏增函数”
(1)试说明y=sinx+cosx是区间(0,
π
4
)上的“偏增函数”;
(2)记f1(x)=x,f2(x)=
a
x
(a为常数),是判断f(x)=f1(x)+f2(x)是否是区间(0,1]上的“偏增函数”,若是,证明你的结论,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省济宁市曲阜市高三(上)11月月考数学试卷(理科)(解析版) 题型:解答题

已知a=2(cosωx,cosωx),b=(cosωx,sinωx)(其中0<ω<1),函数f(x)=a•b,若直线x=是函数f(x)图象的一条对称轴,
(1)试求ω的值;
(2)先列表再作出函数f(x)在区间[-π,π]上的图象.

查看答案和解析>>

同步练习册答案