精英家教网 > 高中数学 > 题目详情

一变压器的铁芯截面为正十字型,为保证所需的磁通量,要求十字应具有 的面积,问应如何设计十字型宽及长,才能使其外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.

时R2最小,即R最小,从而周长最小,
此时

解析试题分析:解:设由条件知:

设外接圆的半径为R,即求R的最小值,

等号成立时,
∴当时R2最小,即R最小,从而周长最小,
此时
考点:函数模型的运用。
点评:解决该试题的关键是利用函数以及不等式的思想求解最值,这是考试中最值的一般处理方法。属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

下图是一个二次函数的图象.写出的解集;

(2)求这个二次函数的解析式;
(3)当实数在何范围内变化时,在区间 上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q= 最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知区间,函数的定义域为
(1)若函数在区间上是增函数,求实数的取值范围
(2)若,求实数的取值范围
(3)若关于的方程在区间内有解,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
专家通过研究学生的学习行为,发现学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设表示学生注意力随时间(分钟)的变化规律(越大,表明学生注意力越大),经过试验分析得知:
(Ⅰ)讲课开始后多少分钟,学生的注意力最集中?能坚持多少分钟?
(Ⅱ)讲课开始后5分钟时与讲课开始后25分钟时比较,何时学生的注意力更集中?
(Ⅲ)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲完这道题目?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(Ⅰ)若为偶函数,求的值;
(Ⅱ)若上有最小值9,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)通常情况下,同一地区一天的温度随时间变化的曲线接近于函数的图像.2013年1月下旬荆门地区连续几天最高温度都出现在14时,最高温度为;最低温度出现在凌晨2时,最低温度为零下.
(Ⅰ)请推理荆门地区该时段的温度函数
的表达式;
(Ⅱ)29日上午9时某高中将举行期末考试,如果温度低于,教室就要开空调,请问届时学校后勤应该送电吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在经济学中,函数的边际函数定义为.某公司每月最多生产100台报警系统装置,生产台()的收入函数为(单位:元),其成本函数为(单位:元),利润是收入与成本之差.
(1)求利润函数及边际利润函数的解析式,并指出它们的定义域;
(2)利润函数与边际利润函数是否具有相同的最大值?说明理由;

查看答案和解析>>

同步练习册答案