精英家教网 > 高中数学 > 题目详情
已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2)。
(1)求抛物线C的方程;
(2)命题:“过椭圆的一个焦点F1作与x轴不垂直的任意直线l交椭圆于A,B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值是”,命题中涉及了这么几个要素:给定的圆锥曲线Γ,过该圆锥曲线焦点F1的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F1,M两点间的距离的比值。试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明;
(3)试推广(2)中的命题,写出关于抛物线的一般性命题(不必证明)。

解:(1)依题意,可设抛物线C的方程为:y2=2px(p>0)
∵抛物线C过点(1,2),
∴22=2p,解得p=2
∴抛物线C的方程为:y2=4x。
(2)关于抛物线C的类似命题为:过抛物线y2=4x的焦点F(1,0)作与x轴不垂直的任意直线l交抛物线于A,B两点,线段A的垂直平分线交x轴于点M,则为定值,且定值是2。
证明如下: 设直线AB的方程为x=ty+1(t≠0),代入y2=4x,消去x,得y2-4ty-4=0
因为Δ=16t2+16>0,可设A(x1,y1),B(x2,y2),
则y1+y2=4t,y1y2=-4,x1+x2=t(y1+y2)+2=4t2+2,
所以线段AB中点P的坐标为(2t2+1,2t),
AB的垂直平分线MP的方程为y-2t= -t(x-2t2-1),
令y=0,解得x=2t2+3,即M(2t2+3,0),
所以|FM|=2t2+2
由抛物线定义可知|AB|=x1+x2+2=4t2+4,
所以
(3)过抛物线的焦点F作与对称轴不垂直的任意直线l交抛物线于A,B两点,线段AB的垂直平分线交对称轴于点M,则为定值,且定值是2。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(I)求t的值;
(II)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为F(
1
2
,0)
.(1)求抛物线C的方程; (2)已知直线y=k(x+
1
2
)
与抛物线C交于A、B 两点,且|FA|=2|FB|,求k 的值; (3)设点P 是抛物线C上的动点,点R、N 在y 轴上,圆(x-1)2+y2=1 内切于△PRN,求△PRN 的面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,焦点F(1,0).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过抛物线C的焦点F作与x轴不垂直的任意直线l交抛物线于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB||FM|
为定值,且定值是2”.判断它是真命题还是假命题,并说明理;
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(注,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,以坐标轴为对称轴,且焦点F(2,0).
(1)求抛物线C的标准方程;
(2)直线l过焦点F与抛物线C相交与M,N两点,且|MN|=16,求直线l的倾斜角.

查看答案和解析>>

同步练习册答案