设函数![]()
(1)当
时,求曲线
处的切线方程;
(2)当
时,求
的极大值和极小值;
(3)若函数
在区间
上是增函数,求实数
的取值范围.
【解析】(1)中,先利用
,表示出点
的斜率值
这样可以得到切线方程。(2)中,当
,再令
,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了
在区间
导数恒大于等于零,分离参数求解范围的思想。
解:(1)当
……2分
∴![]()
即
为所求切线方程。………………4分
(2)当![]()
令
………………6分
∴
递减,在(3,+
)递增
∴
的极大值为
…………8分
(3)![]()
①若
上单调递增。∴满足要求。…10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
时,不合题意。综上所述,实数
的取值范围是![]()
科目:高中数学 来源:2011年全国新课标普通高等学校招生统一考试文科数学 题型:解答题
(本小题满分10分)选修4-5不等选讲
设函数
(1)当
时,求不等式
的解集;(2)如果不等式
的解集为
,求
的值。
查看答案和解析>>
科目:高中数学 来源:2015届河南郑州智林学校高一下学期第一次月考数学试卷(解析版) 题型:解答题
设函数![]()
(1)当
时,求函数
的值域;
(2)若函数
是(-
,+
)上的减函数,求实数
的七彩教育网取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年河北省高二下学期期中考试理科数学 题型:解答题
(本小题满分12分)
设函数![]()
(1)当
时,求
的最大值;
(2)令
,(
),其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(3)当
,
,方程
有唯一实数解,求正数
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com