精英家教网 > 高中数学 > 题目详情

【题目】绿水青山就是金山银山,为了保护环境,减少空气污染,某空气净化器制造厂,决定投入生产某种惠民型的空气净化器.根据以往的生产销售经验得到年生产销售的统计规律如下:①年固定生产成本为2万元;②每生产该型号空气净化器1百台,成本增加1万元;③年生产x百台的销售收入(万元).假定生产的该型号空气净化器都能卖出(利润=销售收入﹣生产成本).

1)为使该产品的生产不亏本,年产量x应控制在什么范围内?

2)该产品生产多少台时,可使年利润最大?

【答案】(1)100台到550台之间;(2)年产300台时,可使利润最大

【解析】

1)由题意,成本函数为,从而年利润函数为,要使不亏本,利用分段函数和二次函数的性质,即可求解.

2)利用分段函数,求得每支上的最大值,即可得到函数的最大值,得到答案.

1)由题意得,成本函数为

从而年利润函数为

要使不亏本,只要Lx≥0

①当0≤x≤4时,由Lx≥0得﹣0.5x2+3x2.5≥0, 解得1≤x≤4

②当x4时,由Lx≥05.5x≥0, 解得4x≤5.5

综上1≤x≤5.5

答:若要该厂不亏本,产量x应控制在100台到550台之间

2)当0≤x≤4时,Lx= -0.5(x3)2+2

故当x =3时,Lxmax=2(万元),

x4时,Lx)<1.52

综上,当年产300台时,可使利润最大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若,且关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面ADC∥平面A1B1C1 , B为线段AD的中点,△ABC≈△A1B1C1 , 四边形ABB1A1为正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M为棱A1C1的中点.
(Ⅰ)若N为线段DC1上的点,且直线MN∥平面ADB1A1 , 试确定点N的位置;
(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在同一坐标系中,函数y=ax+ay=ax的图象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在区间(0,+∞)内的单调函数,且对x∈(0,∞),都有f[f(x)﹣lnx]=e+1,设f′(x)为f(x)的导函数,则函数g(x)=f(x)﹣f′(x)的零点个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某闯关游戏规则是:先后掷两枚骰子,将此试验重复n轮,第n轮的点数分别记为xn , yn , 如果点数满足xn ,则认为第n轮闯关成功,否则进行下一轮投掷,直到闯关成功,游戏结束.
(Ⅰ)求第一轮闯关成功的概率;
(Ⅱ)如果第i轮闯关成功所获的奖金数f(i)=10000× (单位:元),求某人闯关获得奖金不超过1250元的概率;
(Ⅲ)如果游戏只进行到第四轮,第四轮后不论游戏成功与否,都终止游戏,记进行的轮数为随机变量X,求x的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集是,

(1)求a的值;

(2)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,直线l:y=x+2与以原点为圆心、椭圆C的短半轴为半径的圆O相切.
(1)求椭圆C的方程;
(2)过椭圆C的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形,求直线m的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

同步练习册答案