精英家教网 > 高中数学 > 题目详情

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

【答案】1)(0 2+∞);(2)矩形花坛的面积最小为8平方米.

【解析】试题分析:(1)由列出函数关系式,通分化成标准形式,再求分式不等式的解集;(2)化简矩形的面积,利用基本不等式,即可求解.

试题解析:(1)设DN的长为xx0)米,则|AN|=x+1)米,

|AM|=S矩形AMPN=|AN||AM|=

S矩形AMPN99,又x02x2-5x+20,解得0xx2

DN的长的取值范围是(0 2+∞).(单位:米)

2)因为x0,所以矩形花坛的面积为:

y==2x++4≥4+4=8,当且仅当2x=,即x=1时,等号成立.

答:矩形花坛的面积最小为8平方米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】绿水青山就是金山银山,为了保护环境,减少空气污染,某空气净化器制造厂,决定投入生产某种惠民型的空气净化器.根据以往的生产销售经验得到年生产销售的统计规律如下:①年固定生产成本为2万元;②每生产该型号空气净化器1百台,成本增加1万元;③年生产x百台的销售收入(万元).假定生产的该型号空气净化器都能卖出(利润=销售收入﹣生产成本).

1)为使该产品的生产不亏本,年产量x应控制在什么范围内?

2)该产品生产多少台时,可使年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,分为的中点,

)求证:平面平面

)若,求四面体的体积.

,若平面与平面所成锐二面角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)在平面直角坐标系中,椭圆的长轴长,短轴长

(1)求椭圆的方程;

(2)记椭圆的左右顶点,分别过轴的垂线交直线于点 椭圆上位于轴上方的动点,直线分别交直线于点

(i)当直线的斜率为2时,求的面积;

(ii)求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程|x4x3|=axR上存在4个不同的实根则实数a的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an},等比数列{bn}满足:a1b1=1,a2b2,2a3b3=1.

(1)求数列{an},{bn}的通项公式;

(2)cnanbn求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数与函数处有相同的切线,求实数的值;

(2)当时, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x2-4x+3|.

(1)作出函数f(x)的图象;

(2)求函数f(x)的单调区间,并指出其单调性;

(3)求集合M={m|使方程f(x)=m有四个不相等的实根}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,对任意满足,且有最小值为

1)求的解析式;

2)求函数在区间[0,1]上的最小值,其中

3)在区间[1,3]上,的图象恒在函数的图象上方,试确定实数的范围.

查看答案和解析>>

同步练习册答案