精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=|x2-4x+3|.

(1)作出函数f(x)的图象;

(2)求函数f(x)的单调区间,并指出其单调性;

(3)求集合M={m|使方程f(x)=m有四个不相等的实根}.

【答案】(1)见解析.

(2)见解析.

(3) M={m|0<m<1}.

【解析】

(1)借助对称性作f(x)=|x2﹣4x+3|的图象即可,

(2)由图象写出函数f(x)的单调区间即可;

(3)作f(x)=|x2﹣4x+3|y=m的图象由二者的交点个数确定出集合M.

(1)当x2-4x+3≥0时,x≤1或x≥3,

f(x)=

f(x)的图象为:

(2)由函数的图象可知f(x)的单调区间是(-∞,1],(2,3),(1,2],[3,+∞),其中(-∞,1],(2,3)是减区间;(1,2],[3,+∞)是增区间.

(3)由f(x)的图象知,当0<m<1时,f(x)=m有四个不相等的实根,所以M={m|0<m<1}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,直线l:y=x+2与以原点为圆心、椭圆C的短半轴为半径的圆O相切.
(1)求椭圆C的方程;
(2)过椭圆C的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形,求直线m的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则满足f(f(a))=2f(a)a的取值范围是(  )

A. B. [0,1]

C. D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题px∈R,exmx=0,qx∈R,x2-2mx+1≥0,若p∨(q)为假命题,则实数m的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为等差数列{an}的前n项和,S6=51,a5=13.
(1)求数列{an}的通项公式;
(2)数列{bn}的通项公式是bn= , 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:

组号

分组

回答正确的人数

回答正确的人数占本组的频率

1)分别求出的值;

2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;

3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线:,已知过点的直线的参数方程为: (为参数),直线与曲线分别交于两点.

(1)写出曲线和直线的普通方程;

(2)若,,成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面,点

(1)求证:平面

(2)当平面时,求的值

查看答案和解析>>

同步练习册答案