精英家教网 > 高中数学 > 题目详情
若tanα=2,则2sin2α-3sinαcosα=
 
考点:三角函数的化简求值
专题:三角函数的求值
分析:将所求关系式的分母化“1”后,“弦”化“切”即可求得答案.
解答: 解:∵tanα=2,
∴2sin2α-3sinαcosα=
2sin2α-3sinαcosα
sin2α+cos2α
=
2tan2α-3tanα
tan2α+1
=
22-3×2
5
=
2
5

故答案为:
2
5
点评:本题考查三角函数的化简求值,分母化“1”后,“弦”化“切”是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:关于x的不等式
x4-x2+1
x2
>m的解集为{x|x≠0,且x∈R};命题Q:f(x)=-(5-2m)x是减函数.若P或Q为真命题,P且Q为假命题,求实数m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=(log34)2,b=log43,c=ln
3
,下列结论正确的是(  )
A、a>c>b
B、a>b>c
C、c>a>b
D、b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和为Sn,满足2Sn=3an-3(n∈N*)数列{
cn
an
}是等差数列,其第三项和第九项分别是a1和-a2
(1)求数列{an}的通项公式an
(2)求数列{cn}的通项公式及前n项和Tn
(3)如果对任意的n∈N*,不等式-t2+at+80≥cn恒成立,求使关于t的不等式有解的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(log2x)2+4log2x+m,x∈[
1
8
,4],m为常数.
(Ⅰ)设函数f(x)存在大于1的零点,求实数m的取值范围;
(Ⅱ)设函数f(x)有两个互异的零点α,β,求m的取值范围,并求α•β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足不等式组
x+y≤2
y-x≤2
y≥1
,则
y
x+3
的取值范围是(  )
A、[0,
2
3
]
B、[
1
4
2
3
]
C、[0,
1
2
]
D、[
1
4
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n

(1)数列{an}是递增数列还是递减数列?为什么?
(2)证明:an
1
2
对一切正整数恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-1,1]上的函数f(x)是减函数,且f(1-a)>f(a2-1),求实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+mx+n,对任意实数x都有f(2-x)=f(2+x)成立,试比较f(-1),f(2),f(4)的大小.

查看答案和解析>>

同步练习册答案