精英家教网 > 高中数学 > 题目详情

已知向数学公式=(2,sinx),数学公式=(cos2x,2cosx)则函数f(x)=数学公式的最小正周期是


  1. A.
    数学公式
  2. B.
    π
  3. C.
  4. D.
B
分析:先利用的坐标求得函数f(x)的解析式,进而利用两角和公式和二倍角公式化简整理,利用三角函数的周期公式求得答案.
解答:f(x)==2cos2x+2sinxcosx=cos2x+sin2x+1=sin(2x+)+1
∴T=
故选B
点评:本题主要考查了三角函数的周期性及其求法,两角和公式和二倍角公式化简求值,平面向量的基本运算.考查了学生综合运用所学知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向
a
=(2,-2),
b
=(cosθ,sinθ),
a
b
,则θ的大小为(  )
A、
π
4
B、-
π
4
C、θ=
π
4
+kπ(k∈Z)
D、θ=
4
+kπ(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
π
6
)+
3
2
,若将函数f(x)的图象向右平移
π
3
个单位后,再将得到的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象
(1)求函数g(x)的解析式
(2)求x为何值时,函数g(x)的值最大且最大值为多少?
(3)求g(x)单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(
π
4
,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个
π
2
单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式
(2)是否存在x0∈(
π
6
π
4
),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;
(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)ω>0,0<φ<π)的周期为π,图象的一个对称中心为(
π
4
,0),将函数f(x)图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图象向右平移
π
2
个单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式;
(2)是否存在x0∈(
π
6
π
4
),使f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=sin(ωx+
π
3
)(x∈R,ω>0)的图象如图,P是图象的最高点,Q是图象的最低点.且|PQ|=
13

(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)将函数y=f(x)图象向右平移1个单位后得到函数y=g(x)的图象,当x∈[0,2]时,求函数h(x)=f(x)•g(x)的最大值.

查看答案和解析>>

同步练习册答案