精英家教网 > 高中数学 > 题目详情
7.设数列{an}满足${a_{n+1}}=\frac{{4{a_n}-2}}{{{a_n}+1}}$(n∈N*
(1)若a1=3,${b_n}=\frac{{2-{a_n}}}{{{a_n}-1}}$(n∈N*),求证数列{bn}是等比数列,并求{bn}的通项公式bn
(2)若an>an+1对?n∈N*恒成立,求a1的取值范围.

分析 (1)根据数列的递推公式得到{bn}是等比数列,首项是$-\frac{1}{2}$,公比是$\frac{2}{3}$,即可求出通项公式,
(2)由an>an+1得到数列递减等价于a2-a1<0,即可得到(1+a1)(1+a2)>0,和a2=$\frac{4{a}_{1}-2}{{a}_{1}+1}$,即可出a1的范围

解答 解:(1)证明:$\frac{{{b_{n+1}}}}{b_n}=\frac{{\frac{{2-{a_{n+1}}}}{{{a_{n+1}}-1}}}}{{\frac{{2-{a_n}}}{{{a_n}-1}}}}=\frac{{2-{a_{n+1}}}}{{{a_{n+1}}-1}}•\frac{{{a_n}-1}}{{2-{a_n}}}=\frac{{2-\frac{{4{a_n}-2}}{{{a_n}+1}}}}{{\frac{{4{a_n}-2}}{{{a_n}+1}}-1}}•\frac{{{a_n}-1}}{{2-{a_n}}}$
=$\frac{{4-2{a_n}}}{{3{a_n}-3}}•\frac{{{a_n}-1}}{{2-a{\;}_n}}=\frac{2}{3}$,
∴{bn}是等比数列,首项是$-\frac{1}{2}$,公比是$\frac{2}{3}$,
∴${b_n}=-\frac{1}{2}{({\frac{2}{3}})^{n-1}}n∈{N^*}$;
(2)${a_{n+1}}-{a_n}=\frac{{4{a_n}-2}}{{{a_n}+1}}-\frac{{4{a_{n-1}}-2}}{{{a_{n-1}}+1}}=\frac{{6({{a_n}-{a_{n-1}}})}}{{({{a_n}+1})({{a_{n-1}}+1})}}$,
∵?n∈N*,an>an+1
∴an+1-an<0,an-an-1<0(n≥2),(an+1)(an-1+1)>0,
∴数列递减等价于a2-a1<0,
∴(1+a1)(1+a2)>0,
∵a2=$\frac{4{a}_{1}-2}{{a}_{1}+1}$,
∴(1+a1)(1+$\frac{4{a}_{1}-2}{{a}_{1}+1}$)>0,
∴(1+a1)$\frac{5{a}_{1}-1}{1+{a}_{1}}$>0,
即5a1-1>0,解得a1>$\frac{1}{5}$,
由a2-a1<0,可得$\frac{4{a}_{1}-2}{{a}_{1}+1}$-a1<0,解得a1>2或a1<1
综上所述得$\frac{1}{5}<{a_1}<1,或{a_1}>2$,
∴a1的取值范围是$({\frac{1}{5},1})或({2,+∞})$.

点评 本题考查了数列的递推公式和等比数列的定义,以及数列的函数的特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图所示,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点.
(1)当点Q在什么位置时,平面D1BQ∥平面PAO?
(2)异面直线B1C与D1B所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC中,a,b,c为角A,B,C所对的边,C=$\frac{π}{4}$,且2sin2A-1=sin2B.
(1)求tanB的值;
(2)若b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,若BC=$\sqrt{2}$,AC=2,B=45°,则角A等于(  )
A.60°B.30°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.动点M与定点F(5,0)的距离和它到直线x=$\frac{9}{5}$的距离的比为$\frac{5}{3}$,则点M的轨迹方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.石景山古城地区2013年2月6日至15日每天的PM2.5监测数据如茎叶图所示.
(1)小陈在此期间的某天曾经来此地旅游,求当天PM2.5日均监测数据未超标的概率;
(2)从所给10天的数据中任意抽取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,$B({\sqrt{3},0})$、$C({-\sqrt{3},0})$,动点A满足$|AC|+|AB|=\frac{{2\sqrt{3}}}{3}|BC|$.
(1)求动点A的轨迹D的方程;
(2)若点$P({\frac{1}{2},\frac{1}{4}})$,经过点P作一条直线l与轨迹D相交于点M,N,并且P为线段MN的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知焦点在x轴上的椭圆mx2+ny2=1的离心率为$\frac{1}{2}$,则$\frac{m}{n}$等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.极坐标系下,直线l:ρsin(120°-α)=sin60°的倾斜角为120°.

查看答案和解析>>

同步练习册答案