精英家教网 > 高中数学 > 题目详情
(2012•无为县模拟)对任意x∈R,函数f(x)=ax3+ax2+7x不存在极值点的充要条件是(  )
分析:由已知函数解析式可得导函数解析式,根据导函数不变号,函数不存在极值点,分别讨论a=0和a≠0时,a的取值,综合讨论结果可得答案.
解答:解:∵f(x)=ax3+ax2+7x
∴f′(x)=3ax2+2ax+7
若a=0,则f′(x)=7>0恒成立,f(x)在R上为增函数,满足条件
若a≠0,则△=4a2-84a≤0时,即0<a≤21时,f′(x)≥0恒成立,f(x)在R上为增函数,满足条件
综上函数f(x)=ax3+ax2+7x不存在极值点的充要条件是0≤a≤21
故选A
点评:本题考查的知识点是函数在某点取得极值的条件,其中a=0这种情况易被忽略.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•无为县模拟)全称命题:?x∈R,x2>0的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•无为县模拟)设集合A={x|
2
x-2
 
<1},B={x|1-x≥0},则A∩B
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•无为县模拟)设数列{an}的前n项和为Sn.已知a1=1,an+1=3Sn+1,n∈N*
(Ⅰ)写出a2,a3的值,并求数列{an}的通项公式;
(Ⅱ)记Tn为数列{nan}的前n项和,求Tn
(Ⅲ)若数列{bn}满足b1=0,bn-bn-1=log2an(n≥2),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•无为县模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=2,b=3,cosC=
13

(Ⅰ)求△ABC的面积;
(Ⅱ)求sin(C-A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•无为县模拟)已知命题p:
2-x2x-1
>1
,命题q:x2+2x+1-m≤0(m>0)若非p是非q的必要不充分条件,那么实数m的取值范围是
[4,+∞)
[4,+∞)

查看答案和解析>>

同步练习册答案